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By DEAN R. CHAPMAN

SUMMARY

The pair of motion equations .for entry into a

planetary atmosphere is reduced to a single, ordinary,

nonlinear differential equation of second order by

disregarding two relatively small terms and by intro-

ducing a eertain mathematical transformation. The
reduced equation includes various terms, certain of

which represent the gravity force, the centrifugal

acceleration, and the lift force. If these particular

terms are disregarded, the differential equation is

linear and yields precisely the solution of Allen and
Eggers applicable to ballistic entry at relatively steep

angles of descent. If all the other terms in the basic

equation are disregarded (corresponding to negligible

vertical acceleration and negligible vertical component

of drag force), the resulting truncated differential

equation yields the solution of Stinger for equilibrium

fl, ght of glide vehicles with relatively large lift-drag
ratios.

A number of solutions .for lifting and nonlifling

vehicles entering at r_zrious initial angles also have
been obtained from the complete nonlinear equation.
These solutions are universal in the sense that a

single solution determines the motion and heating

of a vehicle of arbitrary weight, dimensions, arul

shape entering an arbitrary planetary atmosphere.

One solution is required for each lift-drag ratio.
These solutions are used to study the deceleration,

heating rate, and total heat absorbed for entry into

Venus, Earth, Mars, and Jupiter. From the

equations developed for heating rates, and .from
available information on human tolerance limits

to acceleration stress, approximate conditions for
.... .2 . o , •

m_n¢mzz_ng the aerodynamw heating of a tr_mmed

vehicle with constant lift-drag ratio are established

for several types of manned entry. A brief study

i Supersedes NACA Technical Note 4276 by Dean R. Chapman, 1958.

is included of the process of atmosphere braking for

slowing a vehicle from near escape velocity to near
satellite velocity.

INTRODUCTION

One of the many challenging problems con-

nected with space fligh t occurs during the terminal

phase of operation when an orbiting vehicle enters
the Earth's atmosphere or the atmosphere of

another planet. Some important aspects of this

problem are the possibly severe decelerations

for human occupants, the intense aerodynamic

heating, and the tactical aspect of having satis-
factory control over both the time and location of

landing. The problem is made more interesting
by interrelationships between these aspects which

require as always, keen understanding in order to

make the best design compromises. For example,

the lowest heating rates and smallest decelerations
are obtained with very shallow entry paths; but

the tactical aspects of fixing the time and location

of a vehicle upon landing are most difficul5 with
these very shallow entries. Also, the total heat

absorbed during descent is greater for shallow

entries than for steep ones. If descent at a

steeper angle is induced by deflecting the orbit,

such as by means of a retro-rocket, then the total
heat absorbed for laminar flow is reduced sub-

stantially, and the time and location aspects of

recovery are improved , but both the deceleration
and the heating rate are increased. ]n order to

devise an efficient method of entry for a given

application, it is highly desirable that a designer
have available relatively simple equations for

computing how each variable at his disposal

affects the entry trajectory, the deceleration, and

the aerodynamic heating.

J.
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For several special types of entry, analytical

theories are available which provide simple equa-

tions showing clearly how each variable affects
the motion and aerodynamic heating. In the

case of ballistic-type entry without lift at suffi-

ciently steep angles that the gravity and centrif-

ugal forces call he disregarded, the analysis of
Allen and Eggers (ref. 1) provides such equations.

In the case of smooth gliding-type entry at zero

initial angle with a sufficiently large lift-drag ratio
that the vertical acceleration and the vertical

component of drag force can be disregarded, the
analysis originally given by S_inger (refs. 2 and 3)

would be applicable. In the case of skipping

vehicles entering at sufficiently steep angles and

with a sufficiently large lift-drag ratio that the

gravity and centrifugal forces can be disregarded,
the analysis of Eggers, Allen, and Neice (ref. 4)

would apply. For more general types of entry,

where the gravity force, centrifugal force, lift

force, vertical acceleration, and vertical com-

ponent of drag are all of importance, these existing
analyses would not apply. Such would be the

case, for example, for the entry of a satellite with

a small lift-drag ratio, or for the entry of any

orbiting vehicle starting with a very small initial

angle. As a result, present understanding of the
relatively shallow entries--which are of special

interest to manned space flight--is based pri-

marily on numerical calculations made with

computing machines in connection with relatively
specific vehicles (see e.g., refs. 5, 6, and 7).

The objective of the present report is to develop

an approximate analytical solution to the motion

equations which is usable for engineering calcu-
lations and which is applicable to an arbitrary

planetary atmosphere, to a lifting or nonlifting

vehicle, and to entries along either shallow or

steep descents. Such a solution could be applied

to a fairly broad variety of vehicles, such as skip,

glide, satellite, ballistic, or escape vchicles under-

going the process of atmosphere braking. An
additional objective is to develop a method

applicable to composite types of entry, such as

entering initially with zero lift, and then suddenly

changing the lift and/or drag at any number of

points during the descent.

During the preparation of this report an
interesting report by Gazley (ref. 8) became
available in which he considers the entry of a non-

lifting satellite into a planetary atmosphere from

a decaying orbit. He obtains an approximate

analytic solution by making an arbitrary assump-

tion about the relationship between velocity and

angle of descent which is not made in the present

report. As a result, his end equations for this

particular type of entry are quantitatively different,
though qualitatively similar to those of the present

report, as discussed briefly later.

NOTATION

a resultant deceleration (Eq. (51))

A reference area for drag and lift, sq ft
C dimensional constant in equation (35) for

stagnation-point heat-transfer rate

D
CD drag coefficient, 1

_P ®V2A

L

CL lift coefficient, _p®V2 A

D drag force, Ib

g local value of gravitational acceleration,
ft sec -2

gc gravitational conversion constant, 32.2 ft
sec-2

k_ ratio of local heat flux to that at a stagna-

tion point, q

k2 average value of heat flux relative to stag-

nation point value,

Lfqdss
1 characteristic length of vehicle, ft

L lift force, lb

m mass of vehicle, slugs

mean molecular weight of planetary atmos-

phere (consistent units with gas constant

and g)
Pr Prandtl number

q convective heat-transfer rate per unit area,

Btu/sq ft sec

total convective heat absorbed, llqdtQ dS,

Btu

dimensionless function proportional to heat-

ing rate (_5/_ for laminar flow)

dimensionless function proportional to total

beat absorbed (y_3/_Z-'/_ cos-' ¢¢I_)
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distance from planet center, ft

universal gas constant, or radius of curva-
ture of vehicle surface in feet

Reynolds number, p®V®l
P®

circumferential distance traveled, ft

surface area wetted by boundary layer, sq ft

time, sec
temperature (various units employed)

circumferential velocity component normal

to radius vector, ft/sec

circular orbital velocity, _/-_-_,ft/sec

ratio, u_

upper limit for range and total heat ab-
sorbed (see eqs. (28) and (39b))

vertical velocity component (along direc-

tion of radius vector), ft/sec

resultant velocity, u_-Tv _

V
ratio, -

U¢

altitude, ft

weight of vehicle at earth's surface, mg_, lb
dimensionless function of _ determined by

equation (21) and appropriate boundary
conditions

atmospheric density decay parameter, ft -_

ratio of specific heats behind bow wave
angle in polar coordinates

coefficient of viscosity, slug ft -1 sec -_

density, slug ft -3

flight-path angle relative to local horizontal
direction; positive for climbing flight,

negative for descent

SUBSCRIPTS

sea level

free stream (ambient atmosphere)

stagnation point
initial condition

W.
break where (_ m discontinuously changed

relative to earth

SUP_

differentiation with respect to

dimensionless quantity

ANALYSIS

ASSUMPTIONS AND APPROXI'MATIONS

The problem analyzed concerns that portion of
the descent of a vehicle into a planetary atmosphere
wherein the decelerations and the convective aero-

dynamic heating are dominant. Three assump-
tions made at the outset are:

(i) Atmosphere and planet are spherically

symmetric.
(ii) Variations in atmosphere temperature

T® and molecular weight M with alti-

tude are negligible compared to the
variation in density (e.g., dT®/T®(<

do® [p. and dM/M<<dp®/p®).

(iii) Peripheral velocity of planet is negli-

gible compared to the velocity of the

entering vehicle.

Assumption (i) is reasonable for those planets
which have only small equatorial bulges (such as

Venus, Earth, and Mars), inasmuch as the severe

aerodynamic heating and decelerations occur over

a length of flight path which is small compared to

the planet's mean radius (the order of one-tenth
the planet radius for nonlifting bodies). The as-

sumption of spherical symmetry, however, would

not be as reasonable for planets with relatiw'ly

large equatorial bulges, such as Jupiter and
Saturn. As noted later, this assumption of

spherical symmetry can introduce some inac-
curacy if the descent is nearly along a line of

longitude and if the vehicle also happens to have

a relatively large lift-drag ratio. For large lift-

drag ratios the important deceleration and heat-
ing portions of the descent can be prolonged over

a distance comparable to the planet's radius;
hence, the nonspherical nature of the atmosphere

might be important in such cases.

Assumption (ii) leads to a "locally exponential"

atmosphere. It enables the differential of ambient

pressure within an atmosphere

dp® dp®_{_dT® d_I

to be written simply as

dp_ do®
p® o®
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This latter equation can be combined with the

equation representing hydrostatic equilibrium in

the atmosphere,

@.=-p.g@

and the equation of a perfect gas p® :p®RT../M,
to obtain the well-known equation for local den-

sity-altitude variation in a planet's atmosphere.

l dp® R Mg
- .=-R-T. (2)

From data such as presented in references 9, 10,

and 11, approximate moan values of several quan-
tities of interest for various planets are as follows

(the subscript (]) designates a value relative to the

earth):

Planet

Venus ........

Earth .........
Mars .........

Jupiter .......

o. 97
1.0
• 53

11.0

gO

o. 87
1.0
.38

2.63

Gll_Ps

COl t NI ....
N2, 01 .......
N_, CO_......
H_, CH, .....

0.8
1.0
1.0
.5

I

M,
gm too/-'

40
29
28
3

270
240
200
170

8 -[, ft

2)<10 s .......
2.35X 104 .....
6"<104 .......

6XIW ..... ,
1

¢0b®

1.0
1.0

• 47
2.0

It is noted here that approximation (it), which
leads to a locally exponential atmosphere, enables

variations in _ with altitude (such as exist in any

real atmosphere) to be considered within the

framework of the present analysis of entry trajec-
tories. Although the equations developed later

are derived for this general atmosphere, the illus-
trative numerical calculations are made for more

simple atmospheres. In most numerical examples

a "strictly ex-ponential" atmosphere is used,

namely, p®----F0e-t* with 8 constant (_o=0.0027

slug ft -s, 1/B=23,500 ft, and _f_-:-30 for the

earth's atmosphere). A comparison is presented

in figure 1 of the strictly exponential atmosphere
and the 1956 ARDC model of the earth's atmos-

phere. In a few numerical examples, though,

the present analysis is compared with more exact

_= 400

2OO

0 -'
-r2 -*0 -B -6 -4 -2 0

r____)

FIt_URE 1. Conll)arison of expone,ltial approximal.ion

with ARDC model of Earth .tlmospherc (1956).

calculations based on the ARDC atmosphere, and
in these cases a semilocal value of the dimension-

less parameter _ is employed. The concept of

a semiloeal value of _-r arises from the fact that

the region of most import.ant heating and decelera-

tion for a given vehicle occurs only over a relatively

thin strip of altitude (very roughly over a 70,0(O
foot strip across which the density changes by

about a factor of 20). Since the analysis which

follows enables the altitude of this important strip

to be ealclflated quickly for any _ven vehicle, the

parameter r_ can be selected as corresponding to

this particular altitude rather than to lhe mean
value for the whole atmosphere. A plot of semi-

local values of _r_ as a function of altitude is

shown in figawe 2 for the ARDC nmdel atmosphere.

In detvrmining-,_ consideration is given only to

the 70,000-foot region of air immediately above

a given altitude. The fluctualions in _ 8r for this
standard atmosphere below about 400,000 feel.

amounl, to the order of :E l0 percent from a mean
value of 30 and are attributed lo the variation in

temperature with altitude. Inasnmch as varia-
tions in temperature with season and wi! h lalil ude

(see ref. 12, for example) ('an thwtuate the order

of -I-20 percent from standard values, the param-

eter -_'_"-" T® -In can fluctuate additionally about

3= I0 percent, from the values in t;gure 2.

Assumption (iii), that the peripheral velocity of
the planet is m_giigible compared to Ihc velocity

of lhe entering wdfiele, would not. introduce signifi-

cant errors for most descents into most phmelary

atmospheres. For descents nearly along a line of
longitude, the errors in heat lransfer and deceh, ra-



AN APPROXIMATE ANALYTICAL M'IgTHODFOR STUDYING ENTRY IN'IO PIJKNETARY ATMOSPHERES 5

35

30 ....

25
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0 i00 2oo 300 400 5oo
Allilude flxlO -3

FI(;u_F. 2. Dim_nsion]_ parameter _ for ARDC
model of Earth atmospbcrz.

tion would, of course, be negligible. Tile greatest

error would occur in an equatorial descent. As a

measure of tilis error, we can take the ratio of tile

equatorial peripheral velocity u, of the planet to
tile circular satellite velocity uc. This ratio for

several planets is as follows:

Ven,,s................. "(]L
Earth ..............
Mars ................... 07
Jupiter ................... 29

Hence the error intn_luced by assuming a non-

rotating atmosphere in the ca._ of near-equatorial
descents would be negligible for Venus. appreci-

able tllough not large for Earth and Mars, but

probably significant for Jupiter.

In mldition to these three physieal assumptions,
two mathematical approximations are made in tire

development of tile subsequent analysis in order

to effect major simplifieations in tile structure of

the equations of motion. They are mentioned
here for convenience:

(a) In a given increment of time, the frac-

tional change in distance from the planet

center, dr/r, is small compared to tile frac-

tional change in velocity du/u; that is,
Idr/rl< <ldul {.

I This value may he • factor of ten higher due to the uncertainty in the

length of the Venus day.

CO) For lifting vehicles, the flight-path

angle _ relative to the local horizontal direc-

tion is sufficiently small that the component
of lift in the horizontal direction is small com-

pared to the component of drag; that is,

I(L/D) tan ÷l<< l-

For nonlifting vehicles (e.g., ballistic entry),

approximation Co) is automatically satisfied;

approximation (a) does not specifically restrict
the descent angle (0 ° to 90 ° can be analyzed for

nonlifting vehicles), but it does restrict tiw analy-

sis to a portion of the overall trajectory below an

upper altitude limit. Above some altitude dr/r
cannot be small compared 1_ du/u, as is shown 14)

be the case on mathematical grounds in appendix

A. Physically, this is clear from the law of

conservation of angular momentum which states

that in the absence of drag, d(mur)--O, or dr/r:

--du[u. Consequently, the present solution would
be rea._onable at least below an altitude where

drag has slowed down a vehicle slightly to some

point (A in sketch) where dr/rNO.l du/u. It is
shown in appendix B that this corresponds to tiw

point where drag has reduced the vehicle velocity

by about 0.01 of the initial velocity. Above tiffs
altitude (point A), orbit-type calculations could

be applied. A method for joining the present

solution to Keplerian ellipses is discussed in

appendix B.

_d_OJd_
Peok - - r u

_ - -_--heoti,_._-- . :__A_.Z__.....

L - """ .':: _-:'_:'-'_:-'-:" -

_gltetch

For lifting vehicles (e.g., skip or gliding entry.)

assumption Co) clearly restricts tile analysis to

small angles of descent. Even if a lifting vehicle
starts entry horizontally, tile angle of descent will

increase, as the velocity is reduced (and as the

centrifugal forces are. diminished) until --(L/D)

tan h becomes unity in tlue terminal subsonic

gliding phase. Although tile solution is not
valid, strictly speaking, when {(L/D) tan _{ is

comparable to unity, a reasonalde over-all trajec-

tory would be obtained by stopping the present

solution at the point where --(L/D) tan _=I
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(point B in above sketch), and considering that

--(L/D) tan _= 1 thereafter. As sketched, peak

heating and maximum deceleration occur well
within the range (solid line) where the present

solution applies.

The ]imitatibns resulting from approximations

(a) and (b) are examined in appendix A, where it

is shown that for vehicles entering from decaying
satellite orbits% with or without positive lift, the

errors introduced are only the order of a few

percent insofar as aerodynamic heating and peak

decelerations are concerned. Surprisingly small

errors result from approximation (b), even for

very large LID ratios, because, in orbital decay
or in a smooth glide, the ]arger the LID the smaller

the angle _ at conditions near maximum heating

and peak deceleration; this keeps the product

(L/D) tan _ small.

Various modes of entry and the portions of the

trajectories of satellite, ballistic, escape, glide, and
skip vehicles to which the analysis applies are

sketched in figure 3.

....... Trojeclory

POrtion (ff trojectory _¢er
which onoly_$ i5 opplioMMe

(4}(_O_I =:: ,.

Bollistic Decoyinq orbit

Glide Skip

I ": ; I
I __" t

Entry from deflected Atmosphere braking
oral with initial ortgie Ct

FIoum_ 3.--Sketches of typical entry trajectories and

portions to which present analysis appli_.

D_]_.OP_ Ole _/_L EQUATION

Descent in a spherically symmetric atmosphere

about a spherically symmetric planet would occur

in a meridian plane in the absence of lateral

forces. This confines the problem to one of two

dimensions for which polar coordinates (1",O) are

convenient. The velocity components are (v, a),
respectively, as sketched below.

L D

-_iqht polh

U -v

Sketch

The vector acceleration in terms of the unit

vectors e, and e0 for polar coordinates is

-_ -_ /dr ut% -' /du u_\

a=e.L_--r)+e.L_t+r) (3)

-$.

where e_ and _ are the unit vectors in the r and

0 directions, respectively. The local flight-path
angle ÷ (negative for descent) is

The vector aerodynamic force

--]b --)

J=(--mg+L cos ÷--D sin ÷)e,
..-j.

--(D cos ¢+L sin ¢)e, (5)

must equal the mass m times the vector accelera-

tion in the absence of thrust-Lype forces. Hence,

equations (3), (4), and (5) yield two component

equations of motion

dry dv u2 L D
cos ¢+ sin ¢ (6)

•/u tw cos ÷ + D sin (7)dt I r

It is noted that g and r are local values in these

equations.
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We will solve this system of equations by dis-

regarding the term uv/r in equation (7) (which, as

will be evident shortly, is equivalent to assumption
(a) that Idr/rk<[du/u]). This restricts the

solutions to problems wherein [uv/r[<<]du/dt],
but the restriction is not serious for the aerody-

namic heating and deceleration aspects of entry.

In the case of orbital entry, for example, maxi-

mum deceleration and heating occur at such small

angles that uv/r is the order of 1 percent of du/dt
(see appendix A). An alternate view of what the

approximation involves can be seen as follows:

uv[ drl Idrl

VI
du-I-_= _ <<1 (8)

Consequently, the disregard of zw/r is precisely

equivalent to approximation (a) mentioned earlier;
namely, that the percentage change in distance

from the planet center is small compared to the

percentage change in velocity. We will employ

this approximation several times more in the analy-

sis. Inasmuch as du/u is relatively large only
when the drag is important, it is understandable

why the basic approximation ldr/rl<<ld_t/ul yields

results applicable to regions of impo .rt.ant decel-
eration and aerodynamic heating, but not to

the outer regions of space where orbit-type
calculations (which do not neglect the acceleration

term uvlr compared to du/dt) are necessary to
describe the motion of a vehicle. In these outer

regions, radiant heat dominates, while convective

heating and deceleration are very small.

By utilizing approximation (a) (inequality (8)),
we have

.... cos_b 1+ tan (9)dt m

so that, by introducing the drag coefficient, ap-
proximation (b) (](L/D) tan ÷]<<1), and noting
that V=u/cos ÷,

du p. uffi

We will select as the independent variable

representing the ratio of horizontal velocity to
the local circular satellite velocity. The basic

approximation (8) taken together with the relation

dg/g=--2_Ir/r resulting from Newton's gravita-

tional law enables us to disregard derivatives of

both 9 and r relative to derivatives of either u,
or _; for example,

dt = dt vgr_-_ (12)

By introduction of the drag coefficient, the motion
equation (6) becomes

-

-t p" C_l,'_' {'sin L _)2 m_\ _b-- _ cos (13)

In order to reduce the pair of motion equalions

(10) and (13) to a single equation, we transform

to a new dimensionless dependent variable Z
defined by

P® /r-

and employ _ as the independent variable. 3 Thus,
by differentiath_g (Z'_dZ/d_), keeping in mind

the basic approximation (8), and utilizing equation

(2) for the local density-altitude variation,

z' z p._t_ dy

o Z dy dt
-_ _ (15)

We see from equations (10) and (12) that

so that substitution into equation (15) and noting

that dy/_=t=_/_ tan ÷ yidds

z,_Z .
u yg _- _--_V/Tmn¢ (17)

uc ._ (11)

sy_ _.a_r klov8 _'. m _zPle vlY 1o expk_ | lZ'iod w_ly _ _oordhJ_
_) _o_kH0_ _m_L It l_.d_cove_ed by Irml Md _.ror sdl_r

trylng vm'Jaus .a4b_ h,Msfm-med eoardnute sy_ems which did nat reduce
tim pair _ moti_ vquatic_ to a _m_bly _pi_ Mngla equatk_
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Proceeding now by differentiation of v and sin

from equation (17), there results

l dr _/r d f_Tsin_'_ I d'_/'KZ"
dt \cos ÷

_i _t_sin2
_--_ _-÷ d'_)(18)

The term d¢/d_ representing flight_path curvature

can be expressed in several ways in terms of the

Z function by noting from equations (17) and

(12) that

Alternate

forms of

terms rep- (19)
_resenting

flight-path
curvature

-.
=KZ,,_Z,+ Z

Consequently, we can substitute the first form
of this equation, together with equation (16)

hlto equation (18) to obtain

ld_

g dt2--°°s_ ¢'l

the final equation for the Z function is obtained.

g dt--

We note from equations (14) and (17) that

equation (13) can be written in the form

lab 1 -------1--_
g dt _-

GZ , Z L

gdt--

Hence, by comparing this equation with equation
(18a), and by observing from the second form of

equation (19) that

Z,. Z -_.,, _ d
--_-----u_ --u_(Z'--_ Z)

_t_j F •

vertical
acceleration

- d /dZ Z_ 1--_" ÷+_/_Lcos3÷= 0
/]

(21)

In this equation, cos ÷:_/1--sin2¢ can be ex-

pressed in terms of Z' and Z through equation (17)

-_ sin q,=Z" Z (17)

Thus, the pair of motion equations hag been

reduced to a single, second-order differential

equation by using _ as the independent variable
and Z as the dependent variable? For nonlifting

vehicles (LID=O) the equation is applicable to

large angles of descent as well as small. For

lifting vehiclcs it is applicable for [L/D) tan

4[<<1- In all carom it is applicable wizen

Id_Pl/Id,,/,,l<<l. We note from equations (4)
and (16) that

dr/r _t_]T --_ sin

du/u du/dt _/_ Z
(22)

As noted in appendix A, the ratio Id_/rl/Id_/_l is
less than 0.1 below the altitude where drag has

(18a) reduced the velocity by about 1 percent of the
initial velocity.

The nonlinearity of equation (21) is due to tbe

term (1-- _-Jcos4_f-uZ which represents the effects

of gravity and centrifugal forces in inducing a
curved flight path. It is noted that the basic

equation is independent of the physical character-

istics 0,,, W, A of the vehicle as well as independent

(20) of the sea-level characteristics _ and go- Aero-
dynamic lift occurs only in the combined para-

meter _f_ L]D. The equation has a singularity
at Z=0 which must be handled analytically in

numerical methods. A method of solving this

equation is discussed in appendix D.

_C]_m-ly,the__ tumidI_ _-.1_-_1 l_ _bg #(t) u LTmelande-
prudent_ I1 ,_(i) -- thedepmd_mtvariable,where_(ffi-)s_l l(a)
_rvmbltr_T lum_kms

J _ • • •
T

com o  t g vi y  nns
of drag force centrifugal force
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It is instructive to consider the physical mean-

ing of each of tbe terms in the differential equation

(21). Equations (19) and (20) help in this regard.

By understanding the physical significance of the

various terms one can judge, for example, what
terms to consider in obtaining special approximate
solutions.

Since the basic differential equation is of second

order, we need two initial conditions to complete
the system. We take these at some initial

velocity _, and write as generalized initial con-
ditions

Z(u,) -- Z, Z' (u,) -- Z,'

If the vehicle starts at a very high altitude where

the density is negligible compared to that near
peak heating, then the definition (14)

z _['g,CoA -
'-\ 2w- u,p, (24a)

shows that Z_ is very small in such cases. For

simplicity we take Z,=0 for entries starting at
very high altitudes. The equation

Z/=V_ sin _b_-t Z,= (24b)
Ui

shows that Z,' wouhl be equal to _/_ sin _b, when

Zs=0. As an example, entry from a decaying

satellite orbit (_,_0 and $,=1 in the stage of
decay before appreciable aerodynamic heating

begins), wolfld be represented by the initial
conditions

Z,(1)=O Z,'(1)--O (25)

One universal Z function would be required for

each value of the parameter _f_L/D appearing
in the differential equation (21).

By allowing Z/ to take on values other than

zero and allowing _, to be either less than or

greater than unity, we can obtain the correspond-

ing Z functions for ballistic, glide, skip, or escape
vehicles entering a planetary atmosphere from

very high altitudes. By further allowing Z_ to

be other than zero, corresponding Z functions can
be obtained for entry starting from an initial alti-

tude where the density may not be negligible

compared to the near peak heating. Before pre-
senting some solutions to equation (21), though, it

is advantageous to show how the Z functions,

9

once computed, can rapidly be used to determine
a number of useful quantities in practical calcula-
tions.

_WIt_IAIIT OIg SOME USggUL QUANTITIES RELATED
TO _ Z FUNCTION

From the Z functions, it is a relatively simple
matter to obtain, for example, the horizontal

component of deceleration a_ by using equations
(3), (12), and (16),

du_g4-- Z
a4 _--_-/ cos ¢ (26)

or

1 du 30
--_ _ = _Z for Earth, _ small

Strictly speaking, g and r arc local values in the

outer layers of the atmosphere where the de-

celeration takes place. For Earth, however, these

are not significantly different from their respective
surface-level values. Local and surface values

might be greatly different, though, for planets

such as Jupiter and Saturn which are believed to

have a very deep atmosphere. The equation for

the angle of descent (4<0 for descent) is, from
_luation (17),

sin 4_-Z'- (Z_)
(27)

='_'Z'--(Z/_) for Earth
3O

The circumferential distance traveled between

a point where the dimensionless velocity is _, and

a point where it is _ can be expressed in terms of
Z from equation 06),

__=I_ F, dt ,_ 1 Ca, cosCd_u _ au=--_ / (28)
r rja I du _/_rJ a=

or

for Earth, _bsmall (29)r --30./,.

Ina._nauch as the analysis is not valid in a very

small neighborhood of Z=0 where _=_,, but

becomes valid after drag has reduced _ by less

than 1 percent (as shown in appendix B) ,we
select an upper limit such as _1=0.995 _ or Ul=

0.99 _ for the entry range. In a practical appli-

cation, this range would have to be joined to the

range of the appropriate Keplerian ellipse in order
to obtain the total range. The corresponding
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time elapsed is obtained also with the aid of

equation (16)

o u 4_o., az (30)

_27.0 _ see for Earth, _ small, g_go

Another useful quantity is the density ratio
(referred to the true sea-level density) which comes

from the definition (14) for Z

,° 2_ f m (31a)
or

4-_ p0 _ ×1°-_

W. lb slug
for Earth, _ m _, p0_---0.00238 ft 3

The left side of this last equation is a function

only of the altitude for a given atmosphere (semi-
local values of _ for the ARDC model atmos-

phere are plotted in fig. 2), so that it provides for

a given Z(_) function the altitude-velocity rela-

tionship for any model atmosphere. The density
ratio corresponding to the strictly exponential

approximation to an atmosphere is

(31b)

=3.2 (_)Zx10 -_ for Earth

W . lb _ _ slug
c_ m _,-v_,,=3o, p0=0.0027 -Rs

The dymmmic pressure is

1 - i mg ,--- _Z
#,. V. _-0-_flr cos*_ (32)

(&)_--__30_Z for Earth, 0-_ m lb ft -s, ÷ small

and the free-stream Reynolds number per unit
length is proportional to Z (eq. (14))

( m

_7100(_)Z

W.
for Earth, _ small, _ m lb It -2 (33)

The viscosity of air at the mean atmospheric

temperature T_=240 ° K is employed to obtain

the constant in this last equation which is valid

only for the earth's atmosphere.

It is interesting that the Reynolds numbers
involved during entry from a decaying satellite

orbit arc relatively small. Near peak heating,

for example, we will see subsequently that the

value of Z ranges from about 0.17 to 0.015, for

LID ratios between 0 and l, so the corresponding
Reynolds numbers are of the order of IO00(W/CDA)

to IO0(W/CDA) per foot. These are sufficiently

small for one to be optimistic about the practical

possibilities of maintaining laminar flow for

shallow entry from a satellite orbit. For steep
entries, as for ballistic vehicles, the Z function

is larger, and hence the corresponding Reynolds

numbers are larger. Curves illustrating this are
presented later.

Fairly simple expressions also can be obtained

for the aerodynamic heating rate per unit area (q)

and the total heat absorbed per unit area Q/S.

Following the analysis of Lees (ref. 13), we will
consider the heating rate at any point on a body to
be a certain fraction

kl _ q (34)

q,

of the heating rate q, at a stagnation point of

radius of curvature R. The heating rate in

hypersonic flow at a stagnation point, can be

expressed as

q,=--_C_ (P®_"( -_u "_'Btu ft-'sec-' (35)
4R\po/ \cos _b/

where the constants C, n, and m depend on the

type of boundary-layer flow. For laminar flow we
have n=l/_ and from the several references listed

(with p0 being the true sea-level density)
Reference C m Remarks

14 16, 800 3. 1 Intermediate enthalpy theory
13, 7 19, 800 3. 22 Theory of Lees

15 17, 600 3. 15 Correlation of AVCO shoektube

experimental results

We will base all our numerical calculations on

laminar flow (n= 1/_), and will use the value m=3

for purposes of simplicity (this corresponds to a
gas with viscosity proportional to _a), and the

value C=IT,000 Btu ft -sI2 sec -1 which is adjusted
to match a mean of the above results for air at

velocities near peak heating (_--_0.8). For gases
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other than air we use the theory of Lees (ref. 13)

to obtain for hypersonic flow C_u_3Pr -m

[(_--1)/_'] 1/4. In subsequent calculations, differ-
ences in the Prandtl number and in the ratio of

specific heats (_') for various planets are dis-
regarded.

Proceeding from equations (35), (34), and (31)

with n----l/2, m----3, and C=17,000, the laminar
convective heat-transfer rate can be written in

terms of the Z function and the relative planetary
constants (go=g/g_r_, _¢=_/_ra, etc.) as

q=klq, = 590 {Pr-_/3_ol/2_/_rs/4[$1/a}

[ _/_] _ Btuk_ cos 3_ ft _sec (36)

where _-_s/_Z1n. (If the flow were turbulent

_a_.2_.s, approximately, and we would have

different powers appearing in equation (36).) It is
noted that the different variables affect the heat

flux in a form represented by a series of factors;
the expression in curly braces represents the effect

on heat flux of the particular planetary atmosphere

the expression in brackets represents the effect of

the physical characteristics of the vehicle, that is,

the mass, dimensions and shape of the vehicle, and
the dimensionless function _=_s/_Z_n represents

the effect of the particular type of trajectory as

determined by the lift-drag ratio.

Whereas equation (36) for heating rate would be

useful in studying vehicles designed to operate at
radiation equilibrium temperatures, an equation

for the total heat absorbed during entry is of more
interest for heat-sink type vehicles.

Q=ffq dt dS=k_Sf q, dt (37)

Solution

Z, =a/_ (sin "6)u In =-
2t

1--_
Z1x----

Z_ w

_---2- \D]

Vehicle

11

where

1 1 q
k,---_ f _,dZ=_ f _ d8 (38)

is the factor which takes into account the varia-

tions in heat flux over the whole surface 8' wetted

by the boundary layer. (For a hemisphere, for

example, kay0.5.) Combining equations (37),
(36), and (30) yields the following equation for
the heat absorbed between _t and

f Pr-'t_m'norSl,_ _
Q=15,900 k h_ " J®

[k_C_R]Q Btu (39a)

where

=J, Z]_ c--_,, (395)

Heat radiation from the surface is not considered

in these equations. They are useful in studying
vehicles incorporating heat sinks or ablation cool-

ing under conditions when the heat radiated away

is small compared to the heat absorbed; Q=AT

(cm),_a (where e is the effective specific heat of

the sink material) is proportional to the l_eat-sink

weight. We note here that the particular plane-
tary atmosphere (g, r, 0) and especially the particu-

lar trajectory Z(_t, L/D) affect the heating rate q
in a different fashion than the total heat absorbed

Q. Examples illustrating this are presented later.

SOMI APPROXIMATE ANALYTICAL Z FUNC'T_ONS

OBTAINED I_OM TRUNCATED BASIC ]_UATION

By disregarding three different combinations of

terms in the basic differential equation (21), three

special solutions are obtained which yield results
identical to previous approximate solutions. The

details are described in appendix C and lead to

the following approximate solutions:

Terms disregarded

(see eq. (21a))

Ballistic

Glide

Skip

Gravity, centrifugal and lift
forces; _ = _= constant (40)

Vertical acceleration and

vertical component of drag (41)
force; cos _--_ 1

Gravity and centrifugal
forces; cos _ _ 1

02)
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The Z1 function provides an approximate solution

for the motion and heating identical to the solu-

tion of Allen and Eggers (ref. l) for ballistic entry.

The ZH function corresponds to equilibrium glid-

ing flight originally discussed by S_nger (ref. 2).
The corresponding aerodynamic heating problems

for this type of hypersonic flight have been dis-

cussed by Eggers, Allen, and Neiee (ref. 4) who
also obtained a solution equivalent to the Zm

function for skip vehicles. As will be apparent

later, the Zf function for ballistic vehicles is quite

accurate for angles of descent greater than several

degrees (_l_l>2 approximately) and the ZH

function for hypersonic glide vehicles is quite ac-
curate for LID ratios greater than about 1 (_/_

LID>30 approximately) provided _0. The

accuracy of the Zm function for skip vehicles,

however, depends on both LID and the initial
angle ff_. The conditions for applicability can be

determined from an approximate solution which

considers both the gravity and centrifugal forces

that were neglected in obtaining Zm. In appendix
C the following approximate solution is developed

for satellite entry (_t=l, Z_-----0) at small initial

angles #_:

(43)

spiral; hence, the initial angle _b_ for this type of

entry is taken as zero, and the initial velocity
_--_ 1. The peak heating and the maximum decel-

eration occur at such small angles that cos _1.

The differential equation (21) is then

d  L=o (44))-- -+

and the corresponding boundary conditions for

decaying orbits are

z0)=0 z'0)=0 05)

This system need be solved only once for each

value of the parameter ._(L/D), and the results

are then applicable to any planet and to any ve-
hicle with arbitrary shape, size, or mass. In par-

ticular, the universal Z function for L]D:O is

presented in figure 4(a) (_Z is plotted since this

productstayswithinsmallerbounds than Z). Solu-
tions of equation (44) also have been carried out

for various values of ._(L[D). The numerical

method employed is described in appendix D.

Curves of the Z functions and related quantities

By comparing with Zm, we see that the gravity
and centrifugal forces can be disregarded provided

2_rl_ht(L]D)]_l. An interesting feature de-

duced from Z:v in appendix (_ is that the total
heat absorbed in the first skip (which is perhaps

the most important) is essentially independent of

both the initial angle _ and the velocity of oxit

from the skip. The heat absorbed varies &q

1]_ and hence is a minimum for entry at C_
(see appendix C). For flat plates in Newtouian

flow this corresponds to an optimum LID of 0.7.

SOME Z ruNcrmNs OaT_m-_ mox _ _uaa_o_

Entry from a decaying orbit for various L/D

('_---- 1, #t_O).---We turn now from the special solu-

tions obtained by truncating the full equation (21),

to some solutions of the complete nonlinear equa-
tion applicable to vehicles entering from a decay-

ing satellite orbit. As the apogee of an elliptical

orbit is slowly reduced by drag (primarily exerted

near the perigee), the orbit eventually becomes a

near circle and then begins a gradually decaying

0 .2 .4 .6 .8 1.0
. . _ (J

D,menslonless_loc_ty, u=_--

(a) Nonlifting vehicles.

l_am_ 4.--Values of Z functions for entry from

decaying orbits into pianetary atmosphere.
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.9

.B

.7

.6

.5

.2

0 .2 .4 .6 .8 1.0

Dimensionlessvelocity. _= _.

Co) Vehicles with L/D_O.

FmVRE 4.---Concluded.

are presented in figure 4(lo) for values of 3/_(L/D)

corresponding for earth to L/D_0.1, 0.25, 0.5,

and 1. They are plotted in coordinates especially
suited for comparison with the ZH function of

equation (41) representing Sgnger's concept of an
equilibrium hypersonic glide. Values are not

shown for LIDS1 since ZII can be used in the
velocity range of interest for these eases. This is

evidont from the various curves in figure 4Co).
The dashed curve represents Z:, which is the exact

solution for L/D-- co. From the Z functions the

various quantities of engineering interest, such as

the deceleration, descent angle, range, time, den-

sity-velocity relationship, dynamic pressure,
Reynolds number, heating rate, and total heat

absorbed can be computed from equations (26) to
(39) presented earlier.

Nonlifting entry with initial angle of descent

Cu_=l, 4,_0).--We now consider entry when the

initial descent angle is not negligible, as it is in the
case of a decaying orbit, but is some finite value

4_. Entry with an initial angle occurs in the case

of a ballistic vehicle, or a satellite to which a

retro-rocket has been applied to divert the orbit

into one which will induce the entry process. The

differentia] equation (21) for nonlifting bodies is

applicable for large as well as small angles of de-
scent.

_--_ _-',, _z cos_4=0 (46)

The initial conditions are

Z(_) :0 Z' (_) _-_f_ sin ¢, (47)

In this case. we have a double parameter family of

solutions _ and _f_ sin 4). Actually, we need

solutions to the nonlinear equation (46) only for
quite small initial angles inasmuch as the Allen-

Eggers solution (eq. (40)) is applicable for moder-

ate and large angles. This may be seen from figure

5 which presents example Z functions correspond-
ing to the nonlinear equation for various --4_ up

to 20 ° with u,=0.9 (23,400 fps, for earth). Since

the ordinate is Z/v_(--sin 4_), the Allen-Eggers
solution is represented by the ordinate function

In ('_J_) on this plot. It is evident that their

solution, which neglects gravity and centrifugal

forees, is quite accurate near peak heating (_--_0.7)
for descent angles greater than about 5 ° . Near

maximum deceleration C_0.4) the descent angle

has to be somewhat larger for comparable ac-

12

I.O-- -_

.4

/
o

"--_ "V'L'- "_ ..._ \

.,v .3 .4 .5 ._ )'.s .9
Dimensionless velocify, _"

FIcmgr_ 5.--Comparison of Z functions for nonlifting entry

with analysis of Allen and Eggers; _i=0.9 (23,400 fps

for Earth).
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curacy. It is clear that, as far as peak heating
and maximum deceleration are concerned, a fam-

ily of solutions to the nonlinear equation need only

be computed for small initial angles.

The Z functions for small initial angles and for
the cJ_se of satellite entry (_= 1) are of special

practical interest. These are presented in figure

6(a) for various values of _4, such that in the

earth's atmosphere --4_-----0 °, 1 °, 2 °, 3 °, 4 °, and

6 °. Rather than to plot Z itself, the quantity

30_Z is plotted which represents for the earth the
horizontal deceleration in g's. Tabulated values

are presented in table [ for --4,-_0 °, 0.5 °, 1 °, 2 °,

3 ° , and 4 ° . It is noted that these, values tabulated

are solutions to equation (46) with the cos44 term

included, and hence are appli(_able to terminal
conditions of small _ (say less than 0.1) where 4

is large, as well as to conditions near peak heating
and maximum deceleration where 4 is small.

The tables of Z apply to any planet for the same

initial value of _r_4t. The supplementary tables

of --4t_,,a, (As/r)_th, and t_,_A can be applied

to other planets over the range where _ is small

by regarding the tabulated values as representing

--(_/30)4, (4_[30)(As[r), and 27_ t, respec-
tively (see eqs. (27), (28), and (30)).

Entry with initial angle of descent for various
L/D (_-----1, 4_<.:0).--If we now consider a vehicle
with lift, we must restrict our considerations to

small initial angles of descent --4_t and to the
portion of trajector)" over which --4 remains

sufficiently small that [(L/D) tan 4[<<1 (as-

sumption Co)). The basic differential equation

(21), with con 4= 1, becomes the same as equation
(44), and the initial conditions are now

Z0)=0 Z'0)=_f_ 4, (48)

Solutions to equation (44) with these initial con-
ditions have been obtained for various values of

xf_ 4_ and for various values of tire parameter

_,/-_(L/D).

In figure 6 some curves representing Z functions

are presented as a function of --4_ for Earth.

The various portions of this figure correspond to
LID for Earth of 0.25, 0.5, 0.7, and 1. It is evident

from these figures, as might be expected, that

small values of LID and --4t do not result in

an)" significant skipping, but once the LID is

increased beyond a certain amount, or the initial

descent angle is greater titan a certain value, then
numerous skips of sizable intensity occur during

the entrT trajectory. Information on the heating

rates, total heat absorbed, and horizontal range
during entry, has been obtained from these Z
functions and is discussed later. The Z functions

in figurc 6 could be applied to any planet by noting

that 4_ for Earth is equivalent to a value (_r)e -u_

times as great on another planet., and that a given
(L/D) for Earth in equivalent to a value (Br)e -'l_

times as great.

Atmosphere braking for various L/D (_>1,

¢,<0).--]n entering the atmosphere of a planet

from space, the approach velocily can be com-
parable to escape velocity (_---_). It is uneco-

nomical in weight to use chemical rockets for

substantially reducing the approach velocity in

outer space, and it is possibly uneconomical in

time to use a low-thrust space engine. Hence
there in considerable interest in the braking

process of making successive passes through an

atmosphere in order to reduce stepwise the

velocity and the eccentricity of an orbit to near
circular conditions (_ 1).

In analyzing the atmosphere braking process,

con 4 can safely be replaced by unity, so the

basic differential equation (21) becomes once

again the same as equation (44), but tire initial
conditions are now

z(_,)=o z'(L)=_/_ 4,

where _>1. By arbitrarily selecting various
values for the angle of entry 4, various solutions

arc obtained corresponding to single passes

through the atmosphere at various altitudes from

the surface. It might be more convenient in

describing a single pass to select as the arbitrary
parameter the velocity 5,, at the exit of the pass,

or 30(fiZ) .... which, for the earth, would be the

maximum deceleration in 9's experienced during

this pass, and would he independent of W/CDA.

In figure 7, four Z functions are presented for
nonlifthlg vehicles which start the braking process

with essentially escape velocity (_= 1.4) but with
different values of maximum deceleration in the

first pass. The short-dash curve (a) corresponds
to a maximum deceleration in the first pass of
30('_Z)m_=--0.46. It is seen that, starting with

this initial pass (and with no further eonlrol
exercised on the vehicle) six passes wo_fld occur

before the seventh pass completed the entry

process. The long-dash curve (b) in figure 7

corresponds to 30(_Z),::-= 1.65 for the first pass.
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In this case only two passes occur before the third

pass completes the entry. Tlm other two curves

(e) and (d) in figure 7 correspond to conditions

wherein the first pass is the only one, inasmuch as

it is made sufficiently close to the planet surface

to complete entry without ever emerging from the

atmosphere.
In computing the Z function for a successive

pass, the initial angle was assumed to be the

same as the exit angle of the previous pass.

The exit angle was taken at the point where
dr/r=du/u. Further discussion of these Z func-

tions, and the results of other such functions

computed for atmosphere braking are presented
later.

RESULTS AND DISCUSSION

From the various Z functions presented, it is

relatively easy to study the influence on entry

motion of several variables of practical interest.

For example, we could study the effect of lift-drag

ratio on deceleration and aerodynamic heating,

or the effect of a small error in initial angle of
descent on the range over which the entry process

takes place. Before considering such topics, how-

ever, it is desirable to discuss two preliminary

4.0i

2 !!!! .4

.....i!I
liiiI
Ii!II

0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8

E C)imensionle_ velocity,

(a) Nonlifting vehic]es.

(b) Vehicles with L/D=0.25.

FIGURE 6.--Values of Z functions for entry from orbital velocity at initial angles of descent; _i= 1.

ID
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1.6

3O DZ

1.2

2.4 .............
i

i)_';;;i m

,IIIHI-L_I+,FFI#_I

2.o iUIIIIIIIIIUIIUilil

iU_!UZ_

I
.e lli_

!il I. d!

0 .2

L4

.2

L8

LO

30DZ

.8

.6
.8 LO

-8 I,D

(e) Vehicles with L/D=0.5.

(d) Vehicles with L/D:0.7.

(e) Vehicles with L/D:1.

F[_u_ 6.---Concluded.

Dime_r_onle_ velocity, _"
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io

3017Z

5

4

0 .2 _4 -6 .8 I0 L_ 1.4

F_cbaa_ 7.--Values of Z functiorm for atmosphere braking of nonlifting
vehicles; _: 1.4.

items. Firs(, we compare some results from the
present approximate analysis for an exponential
atmosphere with more exact machine calculations
for a standard atmosphere. This serves to provide
a feeling for the accuracy of the present analysis,
and also to show how any of the subsequent results
readily can he corrected, if desired, for atmospheric
temperature variations. Second, we discuss the
relative deceleration and aerodynamic heating of
various planetary atmo._heres. This provides
multiplication factors which enable any of the
subsequent results for the earth's atmosphere to be.
quickly converted to results for other planetary
atmospheres.

COMPAIIHON OF PI_I_HgNT ANAIL_['_I_

OTHig_ C_'I=[ONS

An insight into the approximate accuracy to be
expected from the present analysis can be obtained
by comparison with machine calculations of the
pair of motion equations for specific vehicles.
Differences between the present analysis and more
exact calculations can arise ina._nuch as the pres-
ent analysis makes certain assumptions about the
trajectory (that is, ldr/rl < <ld_/_l and I(L/D)tan
÷[ < <1) which need not be made in numerical
machine calculations. The a posteriori cheek of
the trajectory assumptions, as presented in ap-
pendix A, shows that insofar as convective heating
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TABLE I.--VALUES OF Z FUNCTIONS AND

(- ÷i) z..,, = 0 ° ( -- ÷,) B°,,A = 0-5 °

0O. 995
99
98
96
94
92
90
85
8
75
7
65
6
55
5
45
4
35

.3

.25

.2

.15

.1

.05

. 025

_00058
.00165
.00467
.01315
.0241
• 0369
.0515
.0939
• 1435
.1991
.260
.324
.392
.463
.536
• 610
.684
._7
.827
.892
.949
.992

1.009
.958
.825

0.33
• 48
.68
.96

1.19
I. 39
I. 57
1.98
2. 36
2.73
3.11
3.50
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6.09
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1.
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1.
I.
I.
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223
288
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495
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519
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521
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0
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409
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446
470
485
494
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512
516
519
522
525
527
529
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533
535
536
538
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0
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341
360
374
396
411
421
429
436
442
448
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458
463
468
473
479
486
493
504
521
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0. 00131
.00270
.00603
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1.94
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85
8
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7
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6
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5
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(- ÷,) :.,,_ = 2 °
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.284
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• 409
.474
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794
853
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989
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2.00 0
2.02 .057
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2. 13 .246
2. 21 .327
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2. 37 .449
2. 59 .560
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3. 97 852
4. 35 883
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6. 67 959
7. 63 969
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10. 79 983
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19. 28 989
33.2 991
50. 8 991

0
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.0443
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.0880
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1159
1225
1278
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1493
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0
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92
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142
147
152
157
164
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200
215

(--÷_)z°,,A=3 °

0.0078 3. 00
.0157 3. 02
.0313 3. 04
.0624 3. 09
.0934 3. 15

1243 3. 20
1550 3. 26
231 3. 41
306 3. 57
380 3. 76
452 3. 96
523 4. 20
591 4. 46
657 4. 77
721 5. 13
781 5. 56
838 6- 09
890 6. 76
936 7. 63
975 8. 82

I. 005 10. 57
I. 021 13. 42
I. 016 18. 87

• 952 32. 8
.820 50. 6
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deg
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.0108
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.1580
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.221

.228
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192
200

I. 243
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.398
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.942
.986

3. 42
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4. 28
4.77
5.34
6.00
6. 81
7.82
9.15
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14. 01

1.047
1. 088
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1.170
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1.226
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• 245
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233
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256
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1. 429
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(- ÷,) s., a,= 3°

392
409
425

1.005
.956
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4.00

1. 232
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(-÷-Jz.,a,=4 °
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0
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307
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. 370
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.841
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90 . 797
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1.086
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4. 01
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4.07
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4. 15
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4.58
4.74
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10. 52
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.404
. 469
.521
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.599
.630
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.0795
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.0828
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.0959
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0
9

18
28
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(a) Angle of descent and altitude-velocity tra-

jectory.

(b) Dccclcration and distance traveled.

FIGUaB &--Comparison of present approximate

analysis with more exact machine calculations

for ARDC model atmosphere.

and peak decelerations are concerned, only a few

percent difference should be expected for vehicles

entering from a satellite orbit. In figure 8 a

comparison is made of the present analysis with
numerical calculations from the pair of motion

equations using the ARDC model atmosphere.

These numerical calculations were made by M. W.

Rubesin and G. Goodwin using equations equiva-

lent to (6) and (7) without discarding any terms.

The curves in figure 8(a) show close agreement of
both the altitude and the descent angle as a func-

tion of velocity. The curves in figure 8(1)) show

similar agreement of the circumferential distance

traveled (As/r), and of the maximum deceleration

(within 6 perceaat). This small difference in max-
imum deceleration is believed due primarily to

the departure of the ARDC atmosphere in certain

altitude regions from the ide_ized exponential

atmosphere of constant fl (1/23,500 ft-]).
As noted earlier, the present analytical method

can readily be applied using semilocal values of

_f_ if it is desired to make corrections to the

results in order that they more closely represent
some standard atmosphere. Corrections also can

be made to allow for atmospheric seasonal varia-

tions, or for variations with the earth's latitude.

In this sense, analytical results for an exponential

atmosphere are actually more general for global

application than numerical results for any single
standard atmosphere. This can be seen from the
results which follow. Let us consider the maxi-

mum deceleration for entry from a decaying
orbit. This occurs at a velocity near _----0.43 at

which point Z_--0.64 (fig. 4(a)). The approxi-
mate altitude at which maximum decelera-

tion occurs is obtained by substituting either

into equation (31a) to yield (p./po)=_J_4,=

5.5(W/Ow4)XlO -=, or into equation (31b) to

yield

y._..i.,=-23,500(9.96--ln _WA) ft (49)

and is seen to depend on W/C_A. Since _f_ for

the ARDC model atmosphere depends weakly on

altitude, as shown in figure 2, the maximum
deceleration _r_(_Z)=_----0.278_ in a standard

atmosphere also will depend weakly on altitude,

and hence weakly on W/O_l. The resulting

values of --a=_/g are shown by the solid curve in

figure 9, for (W/Oz_l) values ranging from 0.01
to 1000 lb]ft. They agree very well with the

points shown which represent numerical integra-

I
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FXGOaE 9.--Example application of present analysis to a

model atmosphere, and comparison with more exact

machine calculatons, nonlifting entry from decaying
orbit.

tions (Rubesin-Goodwin) of the complete equa-

tions for the ARDC model atmosphere.
If desired, similar corrections for atmospheric

variations also could be made to other quantities

computed for a mean value _t_=30. Thus, the

distance traveled varies as (Br) -In (cq. (28)), and

the convective heating rate varies as (fir) 1/* (eq.
(36)). It is noted that the fluctuations in _/_

with altitude, as plotted in figure 2 correspond

very closely to the fluctuations in T -In, as should
be expected, since _,!_g/R_. Hence any varia-

tions in mean atm0_pheric temperature, such as

seasonal variations or longitudinal variations, can

just as readily be corrected for as variations with
altitude.

Gazley (ref. 8) has developed an approximate

theory for the case, of orbital decay with L/D=O

by assuming a_ is constant. This arbitrary

Venus .......

Earth ...........
Mars ..............

Jupiter .............

(du/d_) o rela-
tive decelera-

tion,

0.9
l. O0
.2

5.

restriction yields results for orbital decay without

lift that are qualitatively similar to the present

analysis, but quantitatively dissimilar. For ex-

ample, the density-velocity relationship near peak

heating (a--_0.8) differs by a factor of roughly 2.

For higher velocities the discrepancy rapidly
increases, and for lower velocities it decreases.

The peak deceleration occurs at lower velocities

and is not greatly affected by Gazley's assumption.
For the earth (_/-_=30), he obtains a maximum

of 9.6 g at _i=0.54, whereas the present analysis,

which does not make any assumptions about the

u(_) relationship, yields 8.3 g at ti=0.43.

RmLAllVg Dmm_nAllON, HBATING, AND ]nrrNOLDS
NUMBlgI_8 ]FOR _;TIRY INTO YAIIIOUS PLANK'TARY

ATMOSPH_L_5

For a given size and shape of vehicle the
deceleration, laminar heating rate, total heat

absorbed, and Reynolds number vary, according

to equations (26), (36), (39), and (33), respectively,

as

q _.pr-_rs_ nglnrS_ #, 14Zln

Q .._pr-_n ,ngrSl4p- i t4Z-! n (50)

Re.-.glnB'nm-lZ

In Hie ease of nonlifting entry from a decaying

orbit (zero initial angle of descent), the charaeter-

isties of the planetary atmosphere (_/_)do not
enter the differential equation or the initial

conditions (Z_----O, Z/=O); hence Z can be dis-

regarded in computing the relative values of the
above quantities for various planets. ]n the

more general ease of entry from high altitude
(Z,=0) with fixed values of _*, and _/-_(L/D),
the Z function still would be the same for all

planets. Neglecting differences in Prandtl number

and ratio of specific heats, we have for several

planets the following relative values applicable to

noulifting enl.ry from decaying orbits, or to any
other type of entry where the values of _f_ and

_/_(L/D) are fixed:

q_
relative heating

rate,

0.7
l. O0
.Oil

50.

Q_
relative total

heat absorbed,

0.8
1.00
.2

50.

Re_
relative Reynolds

nnmhe.r,

]°

1.00
.4

2.
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It is to be remembered that, in tile case of a

vehicle with lift, in order to have the same Z

function, a given L/D ratio on Earth is equivalent
to an L/D ratio (flr)$ -l_ times as great on a planet

other than Earth, and that a given _b_on Earth

also is equivalent to a _ value (flr)$ -_/2 times as

great on another planet. This equivalence, to-

gether with the above table, enables any result

for earth to be converted to a result for each of

the other planets.

In the special case of entry at a constant angle

_, the atmospheric charac_risties enter the

initial conditions on Z (Z,'--_/f_ sin _). Since

equation (40) shows that z_f_ for this type of

entry, we include this in the expressions (50) to

obtain the following relative values applicable
only to ballistic entry (LID=O) at constant 4:

Venus ..............
Earth ..............
Mar_ ...............

Jupiter ..............

(du/dl)$ rela-
tive decelera-

tion,

(g_r)$

0.9
1.00

.09
II.

relative heating
rate,

0.7
1.00

.06
70.

Q_
relative total

heat absorbed,

0.7
1.00
.2

20.

R%
relative Reynolds

number,

1.

1.00
.2

4.

These relative values for ballistic entry are

exactly the same, of course, as would be obtained

directly from the theory of reference I and are
applicable for initial angles greater than about 5 ° .

The previous table would apply for _,=0 °. For

non]ifting entry with _ the order of a few degrees,

the relative values for various planets would be
intermediate to the above two tables.

We see that entry into the atmosphere of Venus

involves only slightly less deceleration and beating

than does entry into the earth's atmosphere,

whereas entry into Mars involves much less

deceleration and heating, and entry into Jupiter,

much more. The Reynolds numbers, however,

are not as greatly different for the various planets.

ov urr ON n_LmaAV[ON. HSATrSC nA_ am)
TOTAl. HI_I' AI_OlkBlglD D_G ENTRY ]_OM DECAYING
ORJl_sS

From the relative values of deceleration and

heating for various planets, together with the Z

functions already presented, certain quantities of

practical interest readily can be computed. The
remainder of this report concerns such application

of the Z functions for the various types of entry.

In the present section we discuss first lifting entry

from decaying orbits (_ = 1, _,---- 0).

Deeeleration.--A plot of the horizontal decelera-

tion du_in g's for the earth's atmosphere (equal

to 30 aZ) is presented in figure 10 as a function
of the dimensionless velocity a for various lift-drag

" ratios. The powerful effect of L/D ratios the

o .2 .4 .6 .8 1.0
• -- U

Dimensionless_elocdy, u=-_c

FmVuE 10. --Effect of lift-drag ratio on deceleration

for entry into F_rth atmosphere from decaying

orbits.

order of only a few tenths is evident from this

figure. It is also evident that the maximum

deceleration occurs near a velocity of a_0.4.

These curves are independent of the shape, size,



AN APPROXIMATE ANALYTICAL METHOD FOR STUDYING ENTRY INTO PLANETARY ATMOSPHERICS 2_

and mass of the vehicle. The resultant decelera-
tion is defined as

_-/du . uv\l _ . Fdv u2 . 1 _
"=¥Lkdi*-;)J (51)

For the special cases of either no motion (u=v_-O)

or of steady flight (du[_=dv[dt=O) at small

vdocities (u<(_/_-), this definition of resultant

deceleration reduces to g, the gravitational

constant of the planet. On the other hand, for

the special case of vertical free fall in a vacuum
(dying---g, u_--O), this expression reduces to the

weightless state (a----0). Likewise, for orbiting

flight in a vacuum, each of the expressions in
brackets vanishes and a=0. By substituting

equations 06) and (20), and utilizing equation

(8), we have f_)r the entry motion

g----)/_--_Z_/1 +(tan __L)' (52)

which, for small angles (]_[<<L/D, cos _--1,

tan s _b<_<l) yields

(g)__ _f_(,Z)__3/1 + (L/D)' (53)

A plot of this approximation for the maximum
resultant deceleration is shown in figure 11 for the

Ic

!
01..5 -I.0 -0..5 0 0.5 1.0 1.5 2.0

Lifl-drog folio, _-

FIGun_ ll.--Effect ot lift-drag ratio on maximum

deceleration for entry into various planetary atmos-

pheres from decaying orbits.

several planets considered. Once again the strong

influence of the LID ratio near L/D_O is evident.
Also evident are the relatively low decelerations

for Mars compared to Earth and Venus, and the

relatively high values for Jupiter.

From the viewpoint of human tolerance to

acceleration stress, it is not only the peak decelera-
tion which must be considered, but also the

orientation of the body, the duration of stress, and
the rate of onset of deceleration. Numerotm

experiments with the human centrifuge have
shown that human tolerance is greatest in trans-

verse orientation; that is, with either chest-to-
back or back-to-chest loading. Centrifuge experi-

ments (see, e.g., ref. 16 and the references quoted
therein) also have shown that the magnitude of

acceleration is relatively more important than the

duration, in the sense that if the acceleration is

increased 10 percent, the tolerable duration

is decreased by a factor of about 2. Thus, a
method believed to be conservative for estimating

the effective duration At during entry is to assume
that the maximum deceleration acts over the

entire time it would take for this deceleration to

slow the vehicle from orbital velocity to rest.

Curves of maximum deceleration versus duration

computed in [his manner are presented in figure
12 for various planetary atmospheres and for

various L/D ratios. Included in this figure is a

boundary representing human tolerance in the
transverse orientation for conditions of rapid onset

of acceleration (ref. 16 and references quoted

therein). This boundary also is conservative from

the viewpoint that entry decelerations are built up

relatively slowly under which conditions, according

to the centrifuge experiments of reference 17, the

body circulation builds up a reflex action of

effectiveness comparable to that provided by a
G-suit. This boundary may not be conservative,

however, from the viewpoint that it is based on

tests preceded by the normal ]-g state, whereas

entry from space would be preceded by the

weightless state. It is evident from both figures
11 and 12 that the decelerations for orbital entry

into the earth's atmosphere are well within the

approximate human-tolerance limit shown even
for nonlifting bodies. For Mars, human tolerance

is sufficient to permit entry at sizable angles of
descent or with negative lifting devices. Manned

entry into Jupiter, however, would require a

positive liftingbody, or some other device in order
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FLOURS 12.--Comparison of decelerations and dura-

tion for entry into various planetary atmospheres

from decaying orbits.

_=l

4_=0

FxGu_,_ 13.--Reynolds number at peak heating for entry

from decaying orbits into Earth atmosphere.

to maintain the decelerations within human

tolerance.

Heating rate.--In examining the effect of lift on

convection aerodynamic heating of entering vehi-
cles, we can use the same Z functions as employed

in studying the decelerations. We note first that

for many vehicles, the values of Reynolds number

near peak heating are sufficiently low that one

would expect a considerable extent of laminar
flow, yet sufficiently high to be in continuum-

gas flow rather than free-molecule flow. A plot

of Refl at peak heating is presented in figure 13 as

a function of W/Cw4 for entry from orbital decay

into the earth's atmosphere. A vehicle on a large
parachute would correspond to W/Gz, A the order

of 0.1 lb/ft s, and, with L/D:O, to Re of about

10 z ft -]. For such conditions the peak heating,

which occurs at a Mach number M, _20, would
be near the slip-flow regime (Re/Mob1). A rea-

sonably blunt metallic structure would correspond

to W/Cz, A values the order of 10 to 100 lb/ft _, and

to values of Re// the order of 10_ to 10 _. Such

values are well within the continuum regime, yet
low enough to be associated with laminar flow•

The curves in figure 13 are for Earth but can be

applied to other planets by multiplying the

ordinate by the value of the relative Reynolds
number already tabulated for several planets.

For a given atmosphere the laminar heating rate

is proportional to

A plot of the dimensionless heating rate _ as a

function of _ is presented in figure 14 for entry

from decaying orbits. The maximum value occurs
at a velocity _ of about 0.8 and is a function

only of the parameter _tL/D) as follows:

_f_(LID) (L/D)z.._t _.,ffi

--15
--7.5
--3

0
3
7.5

15
30

--0.5
--•25

--. 1

0
.1
.25
.5

1.0

0. 375
.302
.253
.218
.184
.138
.098
• 070

o. 783
• 741
.709

.683

.656
• 610
._0
.514
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For LID ratios greater than 1 the asymptotic

7-- (-1-E_)
solution u,--f_(L/D ) can be used to yield

2

-_.ffi=3../3_(L/D)" as noted in appendix C.

We will consider that the vehicle dimensions and

weight (R, A, and W) are fixed, and will study the
influence of vehicle shape (Co and L/D). Under

these conditions the maximum heating rate is

proportional to q._/_f_D. The effect of lift-drag

ratio on maximum heating rate (which occurs at

a _i of rougtfly 0.8) is illustrated in figure 15 for

entry from decaying orbits. The quantities

plotted have been normalized to unity for LID:O,
and can be applied directly to any planet, as can

the curves in figure 14, by recalling that a given

LID for Earth is equivalent to a value (Br)_ -In
times as much for a planet other than Earth.

If the LID ratio could be increased indefinitely

without changing the drag coefficient such as by

using reaction lift, then the maximum laminar

o 1.2

1.0

.6

I
I.E kl_

II

I

1.4 --

_ 4

l

1

\

A ........
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lot f:._,
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0.5 ID
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- heolinq :q-- /f_--W i_-_
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L
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Lifl -drog folio, ( DL---_w,H '

FIGURR 15.--Effect of lift-drag ratio on maximum

laminar heating rate at stagnation point for entry

from decaying orbits.

0 .2 .4 .6 .8 1.0
Dimensionlessvelocity, _"

FZGUR_ 14.--Effect of lift-drag ratio on laminar

heating rate for entry from decaying orbits.

heating rate would be proportional to the dotted

line in figure 15 representing _._ and would de-

crease indefinitely with an increase in LID (asymp-

totically as (L/D) -zr_ for L/D greater than about
0.5). Physically this decrease arises because the

greater the lift, the less rapid the vehicle descends,

so that the heating occurs at higher altitudes where

the density is lower. On a practical device which
uses aerodynamic lift, however, the L]D ratio

cannot be increased much without making the
vehicle more slender and decreasing OD; a decrease
in CD increases the heating rate (_l/_f_D) be-

cause it results in less slowing down, thereby

cau.,fing the peak heating to occur at lower altitudes

where the density is higher. As a restflt, there is

an optimum LID ratio for minimizing the heating
rate which, for the three families of shapes indicated

in figure 15, is near the range of L/D between about

0.5 and 1. For the family of half-cones and half-

paraboloids, the LID ratio was changed by chang-

ing the fineness ratio while maintaining the flat
tops parallel to the stream direction. For the

family of fiat plates the LID ratio was changed by
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changing file a_n_gleof attack. In all eases, CD and

LID were computed for Ncwtonian flow. The

optimum LID ratio is seen to depend somewhat

on the particular aerodynamic shape, since L/D
and Co are coupled somewhat differently for

different shapes. It is evident that the net benefit

to be gained by using aerodynamic lift amounts
to about a factor of 2 in reducing the maximum

rate of aerodynamic heating at a stagnation point.
Inasmuch as the optimum LID ratios for mini-

m_ing the maximum heating rate arc greater
than about 0.5, they are in the range where the

Ztt function for orbital decay is a good approxima-

tion near pe._k heating (see fig. 4(!))). From

equations (36) and (41) we see that for a given

planet and given radius at a stagnation point,

FW-_ /-W-_,. / _-_'

_lnce L/D=CdC.,

q=f"_/C_a (54)

and we see that the various minima in figure 15

each correspond to entering at CL=_. The peak
heating always occurs at a dimensionless velocity

_=_=0.82. For fiat plates in Newtonian

flow CL=_0.77 at an angle of attack of 55 °, for
which L/D=0.71. As noted in appendix C, these
conditions also turn out to represent optimum

ones for minimizing the total heat absorbed for

skippin___-type entry, because, in this case also

and Q vary as (LID) -lr_.
Surface temperature for radiation equilibrium.-

The stagnation surface temperature experienced
during entry of a structure having relatively small

heat capacity (e.g., a thin skin) is calculated by

equating the radiation heating rale to the con-

w, ctive heating rate. For entry from decaying

orbits we may set cos _z 1, inasmuch as _ near

peak heating varies from --2.6 ° to --0.2 ° as LID
varies from 0 to 1. We have

Btu ft-2sec -_ (55)

where E is the surfac_ radiative emissivity, R the

radius of curvature, and ¢=0.48X10 -_ Btu ft -2
sec -i °R-4 is the Stefan-Boltzmann constant.

By substituting the value of g_ for Earth there

results (for T_ in °R, R in ft, W/CDA in ]b ft-_),

t W Xlls

T,_ J/'R"=3840_) "_'" (56)

where _ for laminar flow is equal to us/_ZI/2. The

maximum value _,, _/4 is listed in the preceding

table for entry from decaying orbits. Other types
of entry would require the use of other Z functions,

but equation (56) would remain unchanged. For

a planet other than Earth, the radiation-equili-

brium temperature calculated from the above

equation for Earth wou!d have to be multiplied
by the ¼-root of a quantity already tabulated;

namely, the relative rate of heating _¢ for that

planet. The relative radiation-equilibrium tem-

perature factors T,_¢-----q_ _/4 are:

Venus ................... 0. 91
Earth .................... 1.00
Mars ..................... 55
Jupiter ................... 2. 7

A graph of the maximum temperature parameter

T.,_I/4R 1Is for entry from decaying orbits is pre-
sented in figure 16 as a function of W/CDA (W in

Earth weight). It is noted that the numerical

calculations for nonlifting satellites descending in

the earth's atmosphere, as reported by Kemp and

Riddell (ref. 6) and by Gazley and Masson (ref. 5),
agree well with the analytical variation repre-

sented by the present analysis.

The curves for T_, in figure 16 could be applied

to other planets for any given value of _/_(L/D)

by multiplying the ordinate by the quantity Two
tabu!a_d above. Since LID is a more convenient
variable than _(L/D), however, a separate plot

of the parameter T_I/4/[W/AR(CD)L/D=o] l/s

(which represents the maximum surface temper-
ature that is experienced during entry for radia-

tion equilibrium at a stagnation point of radius

of curvature R) is presented in figure 17 as a

function of L/D for several planets. The coupling

between CD and LID is taken as that for the family
of half-paraboloids. The others would not be

greatly differefit, as may be seen from the curves

in figure 15. We can deduce from figure 17, for

example, that a nonlifting body with _----0.9, and

W/CoAR= 1 lb ft -3 (e.g., R= 1 ft and W/Cz#t= 1
lb ft -2 or R----10 ft and W/CDA=IO lb ft -2) would

experience during entry from orbital decay a maxi-
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FIGURE 16.--Maximum radiation-equilibrium temperature at laminar_stagnation point for entry from

decaying orbits into Earth atmosphere.
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FIGURE 17.--Maximum surface temperature for entry

into various planets from decaying orbits (_=1,

¢,=0).

1000 ° F for Mars, 2000 ° F for Venus, 2200 ° F for
Earth, and 6800 ° F for Jupiter.

Total heat absorbed.--It is emphasized that the

effect of lift-drag ratio on the totalheat absorbed

Q is quite different from the effect just discussed
on the heating rate q. The use of lift prevents a

vehicle with a given drag coefficient from descend-

ing as rapidly as a nonlifting one, thus le_ling to

lower heating rates at higher altitudes, but the

lift also prolongs the descent markedly. This

prolongation dominates over the reduced rate of
heating, to lead to a net increase in total heat

absorbed with increasing L/D. That the total
heat absorbed must increase with an increase in

L/D, may be dearly seen from the general equation

c/ 1

developed by Allen and Eggers in reference l. For

a _iven CD, an increase in LID does not change
the kinetic energy loss, but it does increase the

effective laminar skin-friction coefficient C." inas-

much as the corresponding increase in altitude
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results in the heat being taken aboard at lower

Reynolds numbers where Cr' is h_gher.
The quantitative magnitude of the increase in

Q with an increase in LID may be deduced from

equation (39) for Q (which neglects the heat
radiated from the surface). For a given atmos-

phere (given Pr, _, g, r, _) and a given size and

weight (A, R, W), Q for laminar flow and cos

_--_1 is proportional to the quantity

4.0

whcreQis a function of L/D and is very insensitive
to the lower limit _ down to which the integration

is carried (provi__ding _ is small). For convenience
in evaluating Q from the Z functions, we select

an arbitrar!_ upper limit _----0.99. The following
values for Q are obtained for entry from decaying
orbits:

Q
_/_7(LID) (L/D'j z,,_ for _1_0.99

--30 --1.0 0. 75
--15 --. 5 .93

--7.5 --.25 1.03
--3 --.1 1.23

0 0 1.36
3 .1 1.54
7.5 .25 1.90

15 .5 _ 53
30 1.0 3.54

For LID ratios greater than 1 the asympt__otic
Zu function can be used to yield Q,=

0.62(_r)_14_]D for the heat absorbed between

_1_0.99 and _0. (See appendix C for a more

general expre_ion for Qlz.)
The effect of lift-drag ratio on the total con-

vectivc heat absorbed (disregarding radiation

from the surface) during entry into the earth's

atmosphere from decaying orbits is plotted in
figure 18. These curves are normalized to unity

for L/D_O. In contradistinction to the effect

on if, an increase in L/D by itself is seen to always

increase Q, and hence Q, as anticipated from equa-
tion (57). _en the coupling between L/I) and

CD is considered, an optimum occurs at negative

LID ratios, near the range --0.7 to --0.5. In

view of the fact that the_e negative LID ratios

result in high decelerations (fig. 11) they would
not be feasible for a manned entry into the earth's

atmosphere; the practical optimum for a heat-sink

vehicle would be near L/D_ O.

In figure 19 curves are presented of the total

3.0

o

2.0

ID

o
-i -_5 o .5 i i,.b

Lifl-droq r of io (_-)E,_ ,,,,'

Fmoa_ 18.--Effect of lift-drag ratio on total heat

absorbed during entry from decaying orbits into

Earth atmosphere.

heat absorbed per unit area during entry into

various planets from decaying orbits. Radiation

from the surface is disregarded for these curves.
They represent the family of half-paraboloids,

but the other families would not be significantly

different. As would be expected, the minimum

for each planet occurs at a negative LID ratio.
For Mars the decelerations are not excessive for

LID near --0.5 (see fig. 11) but the reduction in

total heat absorbed compared to a nonlifting

vehicle is only about 10 percent.

NONLIFTING ENTRY FROM DEFLECTIgD ORBITS

In the discussions thus far we have considered

only the trajectories :esulting from decaying

orbits wherein the initial descent angle is essen-

tially zero. This type of entry leads to relatively
shallow angles of descent with relatively low

heating rates, but provides very little, control

over the time of entry and the location of impact.
One method commouly envisioned to fix the

time of entry, and greatly improve the accuracy

I
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F[GuR_ 19.--Total heat absorbed during entry into

various planets from decaying orbits (_, = 1, ¢_--0).

of landing in a predetermined area, is to induco

entry by sudderJy deflecting an orbit so as to

en_r at some initial flight path angle _b_. A retro-
rocket force, for _xample, or a rocket force ap-

plied in the direction toward the planet center

will initiate such entry. Induced entry of this
type, however, results in greater decelerations

and can affect the aerodynamic heating problem

either adversely or favorably.

A curve is presented in figure 20(a) showing the
effect of initial angle 4_ On the maximum decel-

eration experienced during entry of nonliftlng

vehicles into the earth's atmosphere. Also shown
for comparison is the approximate limit of human

tolerance. (for rapid onset with transverse orien-

tation), and a dotted curve corresponding to the
Allen-Eggers theory for _b=constant=¢_. This

theory for _=1 can be used .for descent angles
greater than about 4° or 5 °. Above about -- ¢_=3 °

the decelerations exceed human ' tolerance, so

that some method of deceleration alleviation,

such as provided by lift, or by increasing the
value of I_'/Cw4 during descent, would have to

be employed for manned vehicles entering at

these larger angles of descent. The curve of

(d_/dO,_ in Eart!l g's can be applied to any

planet by regarding the abscissa scale as being

--(_c_)_4_, and then multiplying the ordinate

scaleby
The effect of initial angle on maximum laminar

heating rate and on the total laminar heat ab-

sorbed is shown in figure 20(1)). As would be

expected, the steeper the descent the greater the

heating rate. The total heat absorbed, however,
is less for the steeper descenls because the shorter

duration more than compensates for thegrcater

laminar heating rates. Equation (57) shows

that this must be the case, since entry at larger
angles results in the heat being taken aboard at
lower altitudes where the laminar skin-friction

coefficients are small. If the flow were turbulent

the corresponding reduction in Or' and hence in

Q with an increase in descent angle would be less.
The curves in figure 20(b) approach the curves

developed from the Zz function corresponding to

the solution of Allen and Eggers (see eqs. (C3)
and (C4) of appendix C). In order to be con-

sistent with the other values of Q representing
the heat absorbed from fi=0.99 to _0, a cal-

culated factor 0.84 has been applied to equation
(C4) which represents the heat absorbed from

g=-I to g=0. It is seen from figure 20(1)) that
the Allen-Eggers solution for heat transfer in this

case (g,= 1) is quite a_curate for descent angles

greater than about 2 ° . The curves in figure

20(b) can be applied to other planets by regard-
ing the abscissa as a scale for the quantity

In the figure 20(c) a curve is presented show-

ing the strong influence of initial de.scent angle
on entry range for Earth. Two incremental

ranges are shown: a solid line curve for the

distance between the point where _=0.995 and
the impact point (e=0), and a dashed-line curve

for the distance between _=0.99 and impact.

From the slope of the solid-line curve we obtain

the lower curve shown of average miss distance
for an error in _ of 0.5 °. It is to be remembered
that this miss distance curve does not consider

the essentially dragless portion of a deflected

orbit from the point of orbit deflection to the

point where _=0.995, and hence it is indicative
of only the entry portion of the practical problem

of estimating miss distance. The curve iilus-
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trates, however, the advantage of using a small

initial descent angle in order to greatly improve

the ability to determine impact point.
A further contribution to miss distance which

can be studied with the present equations is that

due to atmospheric variations in temperature with
either season or latitude. Equation (28) shows

that As_(_/-_) -_, so that a 4- 15 percent seasonal

variation in temperature would correspond to a

:t:7-percent variation in _/_ and in As. For

small initial angles, say _,---- -- 1 °, the range during

entry from _0.995 to impact is roughly 1000
miles according to figure 20(e), and hence the

impact point would vary 4-70 miles. The entry

range would be greater in summer than in winter.

A graph of the Reynolds number per foot at

peak heating for nonlifting entry into the earth's

atmosphere with V_----1 is presented in figure 21

for --_t--0 °, 5 ° , 10 ° , 20 ° , 40 ° , and 90 °. The
--_=0 ° curve is based on the Z function of

figure 4(a). All others are based on the ZI

function corresponding to the Allen-Eggers solu-

tion. Entry at other values of -_, according to

this solution, results in values of Re proportional

to V,.

_/i=l

102
.1 I I 0 10 2 10 3

w Ib
CoA ft2

Fm_yR_ 21.--Reynolds number at peak heating for

nonlifting entry from deflected orbits into Earth

atmosphere.

LI]PTING ]M_II'RY _OM ]D]I_fl[.]CCT]glD O]=Bfr8

If a vehicle with L]D_O enters the atmosphere

from a deflected orbit at a sufficiently large initial

angle of descent, the entry trajectory is comprised
of one or more skips. This is to be expected on
physical grounds and is evident from the Z func-

tions already presented in figures 60)) to 6(e).

During the first portion of descent, a vehicle
undergoing a sizable skip will, at the bottom of
the skip, decelerate and take on heat at a lower

altitude than a vehicle at the same velocity which
glides in smoothly from a decaying orbit (4_0).

For large initial angles of descent, then, we might

expect a skipping vehicle entering from a deflected

orbit to experience greater decelerations, higher

heating rates, and shorter entry range than a

gliding vehicle entering from a decaying orbit.
On the other hand, since the skipping vehicle
takes on most of its heat at a lower altitude

(where the skin-friction coefficients are lower), we

would expect from equation (57) that the skipping

vehicle would absorb less total heat during entry
than the orbiting-decay vehicle. Calculations

from the Z functions of figures 60)) to 6(e) show
these various expectations to be the case for

initial descent angles --(÷_)z.,,- greater than

about 1°. This is illustrated in figure 22(a) for

maximum laminar heating rate, in figure 220))

for total laminar heat absorbed, and in figure
22(c) for entry range. The expected increase in

deceleration is already evident from figures (61))
to 6(e) which show 30_Z,,_du/dt as the ordinate.

If a vehicle with L[D_O enters the atmosphere
from a deflected orbit at a very small initial

angle of descent, so that the trajectory might be

described more appropriately as a rippling descent

rather than a skipping one, then the peak de-
celeration and maximum heating rates can actu-

ary be slightly smaller than for the same vehicle

gliding in from a decaying orbit. What happens
in such cases may be seen, for example, in figure
6(c) by comparing the curves for --÷_--1 ° and

--_-0 °. The rippling entry (--_----1 °) has one
maximum on each side of the maximum for

--_,----0 ° representing orbital-decay entry. These
two maxima in deceleration for --÷_1 ° are

slightly less than the single maximum for --÷_0 °.
A similar situation can exist for the maxima in

heating rate. As a result, the curves in figure

22(a) for the dimensionless maximum heating
rate _=_ for lifting vehicles entering from deflected
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orbits show sl_ht waviness and sometimes slight
reductions brow the values for --_= 0 when the

initial descent angle is less than about _o to 1%
Consequently, we can say that, in principle, a
rippling-type descent from a deflected orbit can
have lower maximum heating rates than a gliding

descent, but for practical purposes, there is no
significant difference between the two.

It may be desirable to combine lifting and non-
lifting entry in order to achieve some advantages
of both types. For landing maneuverability it
obviously is advantageous to employ a lifting
vehicle. Tile total heat absorbed by a lifting

vehicle, however, is much higher than for a non-
lifting vehicle (fig. 18). The optimum use of
aerodynamic lift reduces the maximum heating
rate only to about one-half that of a nonlifting
vehicle of the same W/A. Nonlifting vehicles

can more easily be constructed with much lighter
W/A ratios by employing, for example, a large,
light drag device (for example, a drag chute
made of metallic fibers). The larger the device,

tile smaller is the heating rate (q,',,1/_-A['_'l-arz),
the smaller the entry Reynolds numbers
(Re,-,,(W/C_l)l,--,l-_), and the better the possi-
bilities are of maintaining laminar flow. Non-

lifting vehicles with shuttlecock stability are
advantageous also from the viewpoint of minimum
control requirements during entry. Hence, an
evident composite type of entry, wlfich combines
some of the desirable features of lifting and non-
lifting trajectories, would be to enter first without
lift but with a small W/C_rA provided by a drag
device; then, when the velocity is reduced to a
certain value a, the device is jettisoned or re-
tracted, leaving a lifting vehicle of larger W/Cz_A
for the remainder of the descent.

A practical compromise is required in selecting
_, because the drag device should be jettisoned

o I 2 3 4

(a) Maximum laminar heating rste.

Fzc, umg 22.--Effect of initial angle of entr_j on

laminar aerodynamic heating and range of lifting
vehicles-

4

(b) Total laminar heat absorbed from fi=0.99 to ___0.

Fz ov3a_. 22.--Continued.

I
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0 1

(c) Entry range, from "_=0.99 to-_____0.

FIG ITR_ 22.--Conciuded.

as soon as possible from the viewpoint of achieving,
maximum maneuvering range, but as late as

possible from the viewpoint of achieving major
reductions in heating rate. For the initial non-

lifting portion of descent let the drag-weight

parameter be (W/CvA)0 and the Z function be _.

For the subsequent portion let the corresponding
quantities be (W/Cw4), and Z_. Since the alti-

tude y and the angle of descent _bare continuous

at the break velocity _, we have two conditions
from equations (14) and (17)

(z,). ) = (za i,i - } (58)

:l=lZo'-' ) (59)
/b \ t

for determining the initial conditions Zj_-Z_,
and Z,/=Z_/ for the second portion of descent.

Hence the Z_ function can be determined approxi-

mately from equation (C13) of appendix C by

substituting _,=_, Z_--Z,_, sin _,=_b_, and cos
_-----1. The maximum heating rate occurs near
the bottom of the first dip after the break, and

can be obtained from equation (C24) in appendix
C with the same substitutions. The total }teat

absorbed in this dip can be obtained from equation

(C25).
As an example let us consider the case of a large

drag device ((W[Cw4),>>(YF/Cw/I)Ü) jettisoned

at a velocity tit &wing ent_ _ from a decaying

orbit. In order to minimize the peak heating

after jettisoniz_g, as well as minimize the total

heat absorbed during the skip, a value LIDs0.7

is selected. Curves showing the resulting values
for maximum beating tale _. after jettisoning,

and total heat absorbed Q, during the first skip,

are pre_sente(1 in figure 23 as a function of the

break velocity fit. We see that a large drag device
carried down to _=0.4, for example, would

have a maximum heating rate about _ of that

for the same vehicle with no drag device.

I_O .20 -- -

.8 _16 ---

E g

E _o _

-- [ -I
L

I

-- s _1

k5 ._ _ ..... _ . _ __

i

0 0 _2 .4 -6 _ tO

FzG_g 23.--Dimensionlem maximum heating rate

and total heat absorbed for a composite entry with

L/D=O down to velocity _, and then L/D=0.7

theretdter.

COMPhiUSON OIg SI_i_AL TY]Pi_ Olr lgcR]r WITH _',_i

It is interesting to compare the relative magni-

tude of aerodynamic heating for the several types
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of entry diseussed. The dimensionless maximum

heating rate _. and file dimensionless total heat

absorbed Q are used for this comparison. They

would be proportional to the actual heating rate
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and the total heat absorbed for vehicles of the

same size and W/C_A. The table which follows

summarizes these quantities for seven different

types of entry, all starting with _,= 1.

0
0.7

Type vf entry

Near optimum glide for minimum q-a* (hi=0) ...............
Near optimum ripple for minimum q._ (--hi=0.5 °) ..........
Near optimum glide for minimum Q(hl--0) .................
]qear optimum first skip for minimum Q ......................
Nonlifling (hi 0) .......................................
.Wonlifting, from deflected orbit with --hi:2 ° .................
Composite, large drag device jettisoned at tZb=0.4 ............

L/D

Max heating Total heat
rate absorbed Q

_,,o, for _1=0.99

0. 7 0. 084 3. 0
.7 .083 2.9

--. 5 . 78 .93
.7 .15( - h_-- 2") .90

0 .2'2 1.4
0 .27 .93

for _>0.4 .02 .16
for _<0.4

In comparing these values it should be remem-

bered that the actual quantities of interest for a

given WIA are q,,,_l_l-_D and _/_,z_D, and that

nonlifting vehicles are placed at a small dis-

advantage in the table because they prcsumably

can be designed with somewhat higher values of

C_ than lifting vehicles. It is noted that the total

heat absorbed in the case of the skip vehicle

corresponds only to the first skip. Presumably

this is all that should be considered if the vehicle

is designed, as suggested by Ferri (ref. 7), to

radiate essentially all of the heat absorbed after

each skip.
ATMOSPHERE BRAKING

During entry of a planet's atmosphere from

space at near escape velocity, possibly severe

deceleration and heating problems can occur

during the process of passing through an outer

segment of the atmosphere. The closer a pass

is made to a planet surface, the greater is the

braking action., the greater the deceleration: and

the greater the rate of aerodynamic heating.

The Z functions for four different entry tfistories

of nonlifting vehicles starting with escape velocity

(_s= 1.4) have already been presented in figure 7.

These functions apply to any planet. They are

based on the assumption that after the initial

pass no further control of the vehicle is exercised.

Entry (a) is initiated with 30(_Z)=_=0.46

during the first pass (0.46 g maximum deceleration

for Earth) and corresponds to a dimensionless

peak heating rate of _:0.24 at _=1.38. The

successive peaks correspond to _ progressively

less, while the seventh pass, which starts from

_= 1.08 and completes the entry, corresponds to

__.._0.20. As might be expected this is not far

from the value 0.22 corresponding to orbital decay

from _: 1 with L/D= 0. Since _,_ is a measure

of the maximum temperature experienced by a

radiation_ooled vehicle, it follows that entry of

such a vehicle could be completed on the seventh

pass, without the temperature during any of the

atmosphere braking passes exceeding appreciably

that experienced during orbital decay.

Entry (b) in figure 7 is initiated with 30(_Z),,o,=

1.65 in the first pass during which an amount of

heat is absorbed corresponding to Q=I.5. This
heat could be radiated to space before the second
pass is made in which an additional amount Q=
1.4 is absorbed. The third pass starts from

_=1.09 and completes the entry with Q---IX.
These values are not far from the value Q= 1.4

corresponding to orbital decay with L/D=O.
Since "0 is a measure of the total heat absorbed

by a beat-sink vehicle, it follows that such a
vehicle could complete an entry on the third

pass without absorbing much more heat during
each of the two atmosphere braking passes than
that absorbed during orbital decay.

Entries (c) and (d) in figure 7 are completed in

a single pass and both lose an amount of kinetic
energy (1/2)m(1.4_f_)2=mgr. They absorb
quantity of heat corresponding to Q=2.9 and

Q=2.1, respectively, and experience maximum

heating rates corresponding to _,,,,=0.58 and

_,,,=0.73, respectively. The total laminar heat

absorbed by (d) is less than (c), even though the

maximum heating rate is greater, because entry

(d) corresponds to a closer pass to the planet
surface for which the heat is taken aboard, on the
average, at lower altitudes where the friction
coefficients are lower (see eq. (57)).

In addition to the four Z functions just dis-

cussed, a number of Z functions (not presented)
have been computed for lifting vehicles under-
going single atmosphere braking passes in which
the entering velocity is _t and the exit velocity is
_. Results are presented in figure 24 for _, = 1.4

i
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and in figure 25 for _[ = 1.2. In each figure curves

are presented for the maximum value of hori-
zontal deceleration 30(_Z),_, the dimensionless

maximum laminar heating rate _,,_,, and the
dimensionless laminar heat absorbed Q during the

single pass. The curves are labeled as to the L/D

values corresponding to earth; they also can be

applied to otber planets by recalling that a given
value of LID on Earth is equivalent to a value

(_r)_ -_r_ times as much on another planet.

An interesting feature of these results for single

atmosphere brakings is that for a given loss in

kinetic energy (given _,,), they exhibit the oppo-
site variation with LID from that previously found

for orbital decay. Thus, an increase in L/D
decreases the maximum decderation for orbital

decay but increases it for atmosphere braking; an

increase in L/D decreases the heating rate _,,_
for orbital decay but increases it for atmosphere

braking; an increase in LID increases the heat

absorbed Q for orbital decay but decreases it

for atmosphere braking. From a mathematical

viewpoint the reason for this contrasting behavior

is that the gravity minus centrifugal force term
(1--_)/_Z in the basic differential equation

changes algebraic sign at _= 1. From a physical

yiewl_int, the effect of LID on atmosphere

braking can be understood by noting that in
order to lose the _me amount of kinetic energy,

a lifting vehicle must pass closer to the surface

than a nonlifting one. Hence at the lower alti-

tude the deceleration and rate of heating of the

lifting vehicle are greater, while the friction
coefficients are smaller and hence the heat ab-

sorbed for a given loss in kinetic energy is smaller

(see eq. (57)).

A plot of the maximum surface temperature

parameter T.d/_/(W/Cw4R) '_ as a function of
the maximum deceleration in Earth g's is presented

in figure 26 for atmosphere braking in various

planets with L/D=O. These curves are for a

single pass starting with _= 1.4. It is seen that
in the earth's atmosphere, for example, the maxi-

mum deceleration that can be experienced in a

single pass and still enable the vehicle to exit

from the atmosphere at some velocity _,_>1, is

about 3.5 g. If the nonlifting vehicle attempts to
decelerate more than this by passing closer to the

surface, then before it can exit from the atmos-

phere, the velocity is reduced to _=1 at some

point within the atmosphere and the vehicle

completes entry in a single pass. The limiting
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maximum deceleration for atmosphere braking
foIlowed by exit from the atmosphere of Mars is

seen to be much less (0.7 Earth g), and for Jupiter
much more than for Earth.

A companion plot to figure 26, only for tile

laminar heat absorbed per unit area in a single
pass, is presented in figure 27. These curves

also are for Z/D_O and _,=1.4. In this case,

the heat absorbed increases discontinuously when
the maximum deceleration increases discontin-

uously (from 3.5 g to 7.2 g for Earth) because of the

additional loss in kinetic energy. Any pass still
closer to the surface further decreases the laminar

heat absorbed. This decrease exists because, for

a given loss in kinetic energy, any pass taking on
its hdat at lower altitudes _ill have smaller

laminar friction coefficients, and hence less total
heat absorbed (see eq. (57)).

CONCLUDING REMARKS

An approximate analytical solution for the

motion and aerodynamic heating of a lifting
vehicle entering a planetary atmosphere has been

obtained by disregarding two relatively small
terms in the complete motion equations, and then

introducing a mathematical transformation which

reduces the pair of motion equations to a single,

ordinary, nonlinear differential equation. Rela-

tively few solutions to this differential equation

providc quite general results inasmuch as the

basic equation is independent of the physical

characteristics of a vehicle, as well as independ-
ent of the sea-level characteristics of an atmos-

phere.

Certain asymptotic solutions in closed form

result from a process of truncating various com-
binations of terms from the basic nonlinear differ-

ential equation. The aggregate of terms repre-
sents vertical acceleration, vertical component of

drag force, gravity force, centrifugal force, and

aerodynamic lift force. This tmmcation proced-
ure yields an asymptotic solution for ballistic

vehicles entering at, relatively steep angles of

descent (which solution is identical to that of

Allen and Eggers), an asymptotic solution for

glide vehicles of relatively large lift-drag ratio,

and a solution for skip vehicles.

Comparison of the present approximute solution

for entD _ motion with more exact digital com-
puting-machine resul_ for a standard atmosphere

reveals rather close agreement. The prescn_

analytic method can be applied to any atmosphere
since it includes the effects of variations in at-

mosphere temperature with altitude (and hence
with season or latitude).



38 TECHNICAL REPORT R--11--NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Maximum deceleration during entry into an
exponential atmosphere from a decaying orbit

does not depend on the vehicle weight, shape, or
dimensions; it occurs at a velocity of about 0.4

of orbital velocity, and is much less for lift-drag

ratios as small as a few tenths than for a lift-drag
ratio of zero. Even for nonlifting vehicles,

though, the decelerations appear to be within
human tolerance for Earth and Venus, and far

below for Mars. Manned entry into Jupiter

would require a lifting vehicle in order to avoid
excessive decelerations.

For vehicles entering from a decaying orbit

with aerodynamic lift, tile maximum heating rate

depends strongly on the vehicle weigbt, shape,

and dimensions through the parameter W]Cz_A;

maximum heating occurs at a velocity of about

0.8 of orbital velocity, and, for any given loading

W/A, is minimum for entry at C_. This cor-
responds for common shapes to optimum LID
ratios between about 0.5 and 1.0. Because of

the coupling between CD and L[D for any aero-

dynamic shape, the use of a near optimum LID

can reduce the maximum heating rate to no more
than about one-half that for a nonlifting vehicle.

The laminar heating rate varies directly as
-vf-_'/C_A; hence, by using a drag device to in-

crease markedly C_A, such as a drag parachute

or flare, much larger reductions in heating rate

are theoretically possible than through the use of
a trimmed lifting vehicle.

The total heat absorbed during entry from a

decaying orbit incre&ses rapidly with lift-drag

ratio for vehicles with positive lift. It is a mini-

mum for lift-drag ratios near about --0.5, but

these negative lifts result in excessive decelerations

for manned entry into the earth's atmosphere;
hence the practical optimum for minimizing the

total heat absorbed in orbital-decay entry of a

manned vehicle is near a lift-drag ratio oi zero.

The total laminar heat absorbed, like the laminar

heating rate, varies directly as vr-W/CL, A.

By inducing entry at a sizable initial angle of
desce, nt, the total heat absorbed for laminar con-

vection can be reduced substantially. The limit

of human tolerance to deceleration stress is closely

approached for nonlifting vehicles entering the

earth's atmosphere at an initial descent angle of

about 3 ° , under which conditions the total heat

absorbed is 0.6 of that for a decaying orbit having

zero initial angle of descent, while the deceleration

and the maximum heating rate are correspondingly
increased. However, if a vehicle with small aero-

dynamic lift (say, L/D<O.7, approximately)

enters with a small initial angle, the trajectory

is a rippling descent which can have a slightly

lower maximum heating rate as well as smaller

total beat absorbed than for gliding entry from a
decaying orbit.

The total heat absorbed during the first skip

of a lifting vehicle entering at a sizable initial

angle of descent, is essentially independent of

both the angle of descent and the velocity of

exit from the skip. It is a minimum for entry

at CL,,,, (lift-drag ratios near 0.7). For a given
W/Cj_i, this minimum total tmat absorbed during

the first skip is roughly the same as that absorbed

during the entry of a nonlifting vehicle entering

at an initial angle of descent of about 2°.
In the process of atmosphere braking (super-

circular velocities during entry), the effects of

JL/D on maximum heating rate, on peak decelera-

tion, and on total heat absorbed are the opposite

to the corresponding effects in the process of orbital

decay (subcircular velocities during entry). For

example, an increase in LID with a given CD
increases the maximum heating rate at super-

circular velocities, but decreases it at subcircular
velocities. An increase in LID increases the de-

celerations at supercircular velocities, but decreases
them at subcircular velocities. All increase in

LID decreases the total heat absorbed at super-
circular velocities but increases it at subcircular

velocities.

For nonlifting vehicles starting with escape

velocity and employing atmosphere braking,
entry t_) a planet surface can be completed on

the third pass without the total heat absorl_ed

in any pass exceeding that absorbed for orbi(al

decay, and can be completed on the seventh pass
without the maximum rate of heating exceedi_$

that for orbital decay, and can be completed in

the first pass without the deceleration exceeding

that for orbital decay.

AMES ]_ESEARCH C_NTER,

NATIONAL AERONAWTIes AND SFACE AI_MINISTRATION

MOFFETP F_SLD, CALIF., Apr. 9, 1958
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APPF2qDIX A

CHECK ON APPROXIMATIONS MADE IN ANALYSIS

The basic approximation (a) of the analysis,

as represented by equation (8), can be expressed
fairly simply in terms of the transformed variable

Z and the angle of descent

ld,'/,'l- I_,(dy/dOI _<<lldu/ul- Ir(d_/dO I

Inasmuch as Z/a_p®, this shows that approxima-

tion (a) cannot be valid at very high altitudes

which are represented by a small neighborhood

near d=_t and Z=0. In figures 28(a) and 28(b),
curves of the ratio (dr/r)/(du/u) are shown for

lifting entry into the earth's atmosphere from

decaying orbits and for nonlifting entry from

deflected orbits with various initial angles 4_.

It is evident that in tile regions near peak heating
(_ 0.8) an(1 near peak deceleration (fi--_ 0.3 to 0.5)

the basic approximation should introduce errors

the order of only 1 percent. As a vehicle initially
enters the atmosphere, however, the decelerations

are very small and the errors introduced are

larger. As a general rule, approximation (a) is

valid for engineering calculations once the air

drag has reduced the velocity by about one-half

of one percent (see appendix B). Approximation

(b), that [(L/D) tan 4,1<<1 likewise is a valid
one for heat transfer and deceleration calculations

of vehicles with zero or positive lift entering
from decaying orbits. As figure 28(c) illustrates,

approximation (b) may result in substantial errors

near maximum deceleration for vehicles having

negative lift, but still results in reasonably small

errors near peak heating of such vehicles.

-¢.o4 -

o

dr

0 = ,--.

0 .2 .4 .6 .8 1.0
Dimens;onlessvelocity, _"

(a) Approximation (a) for various LID.

(b) Approximation (a) for various _,.

(c) Approximation (b).

FmuR_ 28.--Check on approximations made in analysL_.

APPENDIX B

MATCHING PRESENT SOLUTION TO KEPLERIAN ELLIPSE

Let us assume that a retro-rocket force, or

some other force, has deflected an orbiting vehicle
into a new Keplerian ellipse which, in the absence

of drag, would intersect the planet surface at

some angle +o. A "zeroth order" approximation

would be to use this angle in the present solution

as the initial angle _ for the entry. This would
be sufficiently accurate for descent angles greater

than a few degrees, but for very small angles of

descent a more accurate matching of the present

solution to the Keplerian ellipse may be desirable.

Since the present solution assumes that
ld,/rl<<Idu/ul whereas the conservation of

angular momentum requires that dr/r: --dulu

outside the atmosphere, it seems reasonable to

select the point of matching where the ratio

(dr/r)/(dulu) is some value less than unity. Let

the descent angle at the point of matching be
_=, and the velocity be _=. Let us confine our

attention to a small region near matching, where
the density is very low, the aerodynamic forces

are very small, and the flight path is only slightly
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curved. We represent the Z function in this

region by the approximation Zz from equation
(40) for constant angle of descent, namely,

Z=_-_= sin4_ In _/_

Since _,, is only slightly less than tZ_ we approxi-

mate ln(ti,,/t_t) by (a,,--u_)/u_. Hence from
equation (22), it follows that at the matching

point the ratio _., of terms discarded to terms
retained is

. dr/r _, sin ¢_, _,r._ ..... _ (B1)

For Earth Br:900, so that _=:1 at _,:0.999

_. _,:0.2 at tL,=0.995_, and _,=0.I at
tz==0.99 _. Thus, it would be reasonable to

match the present solution with a Keplerian

ellipse at some velocity in the range, say, _= 0.995

tL to t_,,:0.99 ti_. The density p= at the matching

altitude (from the defining equation (14) for Z
and from equation (B1)) can be determined
from

r_p,_ .-- Z,, "-%/-_ _, -- _) (-- sin ¢_) (B2)
2 (m/c_4)- =

( ,n )_, (-sinCe) (B3)r-:

or, from p_ we can determine the altitude y_,

and hence the corresponding value of $. from the

Keplerian ellipse at this altitude. The value of

¢. so determined would be the value of ¢, which

closely matches the present solution for the entry
motion.

An equivalent way of matching would be, first,

m select various arbitrary altitudes y_, y_, Y3,

. . . and corresponding densities _, _, m, . . . .

From the Keplerian ellipse the slightly different

angles _, ¢_, ¢h, • • • could then be determined,
and by substitution of tlmse into equation (B3)

in place of _0, the respective values (m/C_l)l,

(_,/C_i)2, . . . which would bring about proper

matching for a given value of e_, (say, 0.1) could

be computed. Interpolation would yield the
matching angle _b_, and the matching altitude y_,

for any desired value of m/CDA.

APPENDIX C

DEVELOPMENT OF SOME APPROXIMATE SOLUTIONS

The first approximate _lution is that for entry

of a nonlifting vehicle along a spiral path which

makes a constant angle Y_with respect to the local

horizontal direction. For this first special case we

designate the Z function by Zz, and see from the
right members of equation (19) that

d (sin ,)=0=_Z,"--_/-_ sin
£4

or, after one integration,

Z/----_f_ sin _ In _-_constant (C1)

The integration constant can be evaluated in

terms of the initial velocity _, and the angle _, to
yield after one more integration for entry from

high altitudes (Z_= 0),

C_Ap.
Z, =In =-= (C2)

_-r sin _ u, 2m_ sin

from which it follows that the dimensionless lam-

inar heating rate _r--- _snZ; a has a maximum value

q,_=0.247 _,a (fir) '/_ _/sin (--_ (C3)

and the dimensionless total heat absorbed from

_--_ to _=0 is evaluated by noting that the
integral of equation (39b) is proportional to

r(l/2) =_/_/2.

_ / _, \2 _ (C4)

This solution for 7.I corresponds to setting the
left members of equation (21) to zero. In order

that the right members of equation (21a) also

vanish, we see from equation (C2) that this special

solution can be realized in two ways: (1) by main-

taining a true spiral path through programming

the lift with velocity in the very special way such
that at all points

L (1--_ _) COS
D _ (/_r) sin _ In (_,)

or (2) by entering with a nonhfting vehicle along
such a steep path that the gravity forces minus

the centrifugal forces are negligible compared to

the vertical component of drag force (this yields
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essentially a straight-line trajectory). Case (1)

of spiral trajectories with programmed lift, is not

easily realized in practice, but case (2) represents

exactly the physical situation considered by Allen

and Eggers (ref. 1) for their solution to the prob-
lem of ballistic ent.ry. Hence, it should not be

surprising that equation (C2) is identical to their

solution. This solution for nonlifting vehicles at

constant 4_ does not depart significantly from the
complete solutions near peak heating (_/_--0.8)

except for initial descent angles less than a few

degrees, and near maximum deceleration (_/_--_ 0.4

to 0.6) except for initial descent angles less than
about 5 ° .

As a second special case, we consider smoothly

gliding, hypersonic flight (_ near 1) with a large

LID and at sufficiently small descent angles that
cos _= 1 and sin _<<L/D. Under these con-

ditions the left-hand terms of equation (21a) in-

volving the normal deceleration and the vertical

component of drag force can be disregarded. The

right members yield for the special function Zn

representing balance between gravity, centrifugal,
and lift forces,

1--_'

Zn--._/-_ (L/D) (C6)

The flight-path angle is obtained from equation
(17) by differentiating equation (C6)

2
--_=_'(L/D) (C7)

This particular solution is the same as the solution

for gliding flight orginally given by S_inger (refs. 2

and 3) for which the aerodynamic heating prob-

lems have been studied by Eggers, Allen, and Neice

(ref. 4). This special solution is quite good for
LID ratios greater than about 1 (for Earth) and

hence is adequate for most glide vehicle analysis.

It cannot be applied, however, to entries with

other than zero initial angle, inasmuch as ex-
tremely small initial angles of descent will result

in a skipping trajectory for which the vertical ac-

celeration term is not small compared to the lift

force. For this gliding solution Zn the maximum
heating rate proportional to _l,_=(,Xs/2Zl/2)m_

occurs at t_----_-3 with

2

_"'-=3_ (_)"°_/D (CS)

the dimensionless function proportional to the
totalheat absorbed is

4i- o

and the range function is

L. 1 (c10)
r DJo _'_2-D m 1--_,'

as obtained in reference 4.

As a third special case, we consider entry with

lift along a trajectory wherein the gravity minus
centrifugal force is relatively small (see eq. (21a)).

A skip vehicle, for example, would fall into this

category. In this case the flight path is deter-

mined primarily by a balance between the normal

acceleration term _Z", the lift term_/-I_(L/D) cos'_h,
and the vertical drag component. The trajectory

is, by assumption, influenced only secondarily by

the gravity minus centrifugal force term (1--_ _)

cos 4 ¢/(_Z); hence we may render the basic dif-

ferential equation linear by supposing that Z in
the denominator of this nonlinear term be approxi-

mated a priori by some Z function obtained either

by neglecting this nonlinear term or obtained in

some other way such as by expanding Z about
_. By writing cos 7_ as the "average" value of

cos 6 for the flight path according to the theorem

of the mean, we have, after one quadrature,

dZ Z r 1 _2
v, -- cos_ 7# |

d_ _ j a, --0-2- d_

_cos3 _ _/_ D1nL _-1- constant (Cll)

at _=_,; equation (17) shows that (dZ/arfi)

--(Z_)----_/_ sin 6, hence the descent angle is

given by

l--fi" ,/,_(sin ,- sin ¢.)= cos' 7_

--cos __ L _/_ In =-¢ (C12)
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and the Z function is obtained by solving the

first-order differential equation (C 11), noting that

1/'_ is an integrating factor,

Z Z, , __ _ d_ f_ (1--_')d'_

-t-_/_sin4_ln _ c°st_(L)_/-_ln' _ (C13)

By disregarding the gravity minus centrifugal

force integral, we obtain a special function Zm
representing balance between normal acceleration,

vertiea] drag component, and lift force,

+.,a.Lsm÷,In =u, 2 In'

and
- / \L

sin _=sin 4,, -- eosS q, | -_ ] In _ (C15)

These last two equations for L/D=O reduce to

equation (C2). If desired, we could substitute

ZIH (or some Other initial estimate of Z) into the
denominator of the integrand in equation (C13),

thus obtaining a correction term for the gravity
minus centrifugal force term. The success of such

a method would depend upon the accuracy and

simplicity of the initial estimate.
To illustrate one application of the special solu-

tion Zm given by equation ((]14), we consider the

first skip only of a lifting vehicle entering the
atmosphere at a small angle ¢i (cos ¢,--_1) and at

orbital velocity (_=-'1). The first skip is gener-
ally the most severe from the heat-transfer view-

point. We have for Z,=0,

L •
Z_"=_/_ (4_ In _--2-D In _ ) (C16)

which can be substituted into the integrand of

equation (C13) to yield an expression for the

gravity minus centrifugal force term. We notice

first, though, that by definition (Zm]_t)"_p® re-
turns to its small initial value Z_ whenever the

vehicle returns to the initial altitude p,t. At the

end of the first skip the velocity is reduced to

some value urn, such that

24_
In (_Hr).--L_

in accordance with the results of reference 4.

This is the vdocity at the end of the dip. Since
we are considering small angles only, --2¢hJ(L/D)

--_1--_m_, and we may substitute In _--_--1 in
equation (C16) for the purpose of evaluating the

double integral of equation (C13) representing

the gravity minus centrifugal forces. This yields
a new Z function

Z,v (I--W)' + Z_rH (C17)
-_-=4_(--_,) u

The velocity at the end of the dip is given by

2¢_ (C18)
In _.= (L-]D) + (112/_r_,)

Since Br=900 for Earth, the correction term

1/(4Br_) can often be disregarded. The path

angle is obtained from equation (C15)

L
_=4,,--(_) ln_ (C19)

so we see that
1

1
L 2 (L/D) Breh, (C20)

_,=_--_ In _,=--4'_ 1

1-_ 2(L/D)#rch,

If 2(L/D)_rcb,>>l these equations reduce to

results previously obtained by Eggers, Allen, and

Neice (ref. 4). In particular, for relatively large

values of (L/D)4_, the angle leaving the dip is

equal but opposite to the initial angle _ of entry,
as noted in reference 4. After a skip, a period of

weightlessness follows at an essentially constant

velocity u, under conditions where the vertical

acceleration (dr/dr) = 9-- (u_/r) is constant; hence

the duration of weightlessness At=2vd(dv/dt) is

At= 2,,.(_,) = 2_,(,/-9;.,,) (C21)

After this period, a second entry occurs at nearly

the same angle as the first entry, only at the
reduced velocity _. The maximum laminar

heating rate occurs near, but not at the bottom

of the dip (4=0) at which point the velocity

_,,, is given by In _,,=_b#(L/D). By substituting

!
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this into equation (C16) the approximate maxi-

mum laminar heating rate is then represented by

3*--(-_,)
_.= C_.'nZ.,'n) = _,.) "'e'_'4_L/D__

N(Or)'/4(--_) for --_<< L (C22)
= ._LID D

An interesting result concerns the total heat

absorbed in a single skip starting from satellite
velocity (_,=1). The total heat absorbed is

obtained from equation (39) together with

By employing the same approximation In _

--1+_ the integral can be evaluated.

.
(Or)'" L_ (L/D) (023)

This is essentially independent of _,, since _,[

(L/D) for many skip vehicles would be small.

_~ for -4_<< L
= (Or)'/'.VCL/D

Although the maximum heating rate in a skip is

proportional to the initial angle of descent _,,

the total heat absorbed is essentially independent

of both the initial angle _, and the exit velocity

_, of the skip. Since Q"_Q/_f-_D we see that
Q_lhcF-_L, which me_zns that the least heat is

absorbed by skipping at CL,_. For inclined flat

surfaces in hypersonic flow, simple Newtonian

theory yields CL,,_=O.77 at an angle of attack

of 55 °, at which angle L/D=0.71. Hence

5..,.,,=_ ,,-/_)'" oJe-_= o.96

This value is compared elsewhere in the DIS-

CUSSION with corresponding values of Q for

other types of entry.

If a skip vehicle does not enter initially at

orbital velocity, but at some different value _,,
then the corresponding equations with gravity

and centrifugal forces neglected indicate the

bottom of the dip to be at a velocity _,, given by

lnC_,./'_,):@d(L[D). At this point the heating

rate is represented by

3_

_.= _),/_,,_J_ (-__ (_4)
42L/D

The exit of the skip occurs at a velocity _, given

by
In (a,/aO=24,d(L/D)

The dimensionless total heat absorbed is approxi-

mately

= _)'"4L-/D (025)

APPENDIX D

INTEGRATION OF BASIC

Many numerical methods could be used to

compute stepwise a Z function from a nonlinear

equation such as

,.,.,
where Z'--=Z=_t_ sin _ A study has not been

u

made of the best way to integrate such an equa-

tion, or of whether or not an alternate form of
this equation, such as

- d -d 1 1 4 L,)oo 
where F=--Z/_ and _F'=_/-#-r sin _, may be prefer-

able for purposes of integration. The particular

NONLINEAR EQUATION

method employed, while probably not extremely

accurate, is simple in the sense that it involves

merely the repetition of a large number of identical

operations. Suppose we know at some initial

point _. the values of Z. and Z,'. Then from the

differential equation we have for the second deriv-

ative (with cos _ set equal to unity for purposes of

simplicity in illustrating the method),

Z." 1 /, Z. 1--_.' _f_L) 0)2)

and for the third derivative

• z.,
(D3)
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Hence a Taylor expansion for Z=+, and Z,+,' at
the next point _.+, yields

_s_, _,_7 ,a__LZ ,,(A ) -'-Z"'"(a_p

Z,,+,'=Z,," + Z,"au+ Z."" (a_)"2

while the above equations (D2) and (D3) yield

Z,+l" and Z,,+,"" when n is replaced by n+ 1 in
the formulas. Thus the process can be continued.
For most cases the Z functions are fairly smooth,
and the inclusion of Z'" is unnecessary in the

above procedure if sufficiently small A_ are used.
For the present calculations Z'" was omitted;
A_=0.001 was employed for _= 1, and a_=0.002
for _= 1.4 and _= 1.2. For skip vehicles, the
Z function can vary quite rapidly and the inclusion
of Z'" presumably would enable larger increments
A_ to be used.

This particular procedure requires a knowledge
of nonzero values 7_ and 7_' at some initial point
_o- Hence the first step is taken analytically.
For decaying orbits an analytical representation
in the vicinity of $_ 1, where (1--_2)/a=---2(1--$),
is

Z0=2_/2 (I--_)31' (D4)

zo'=-dg(1-_)'_ (D5)

since these yield 7_"=2(1--_o)Zo and correspond
to values of both 7,o' and Zof_o which are small

compared to 7_" (see eq. (D1)). Equations (D4)
and (D5) would apply to a lifting vehicle pro-
vided (1--_o) is selected small enough so that

_/_L<<(1--_,)-'t_. If the L[D ratio is large,

we can use the Zn function to obtain

I--_' (D6)
_=4_'(L/D)_

1+ _' (DT)
Z,,'=--_ CL/D)_,

For re-entry with an initial angle 4_ at initial
velocity n, we can use the Zm function for the
first step,

(DS)

o)9)
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